全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

脓毒症急性肾损伤的生物标记物研究进展
Research Progress on Biomarkers of Sepsis-Induced Acute Kidney Injury

DOI: 10.12677/acm.2024.1451415, PP. 201-207

Keywords: 脓毒症急性肾损伤,生物标志物,早期诊断
Sepsis-Induced Acute Kidney Injury
, Biomarkers, Early Diagnosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

脓毒症(sepsis)是由感染引起的全身炎症反应综合征,可导致危及生命的器官功能障碍。脓毒症急性肾损伤(SA-AKI)是危重患者的常见并发症,发病率和死亡率居高不下,早期诊断SA-AKI对临床医师指导治疗和避免肾脏进一步损害至关重要。但至今SA-AKI的早期诊断仍存在许多不足,如何早发现早诊治一直是学术界研究的热点。近年来,随着对SA-AKI病理生理机制的深入研究,一些新兴的潜在生物标记物被发现。本篇综述旨在结合近年来学术界研究新进展对SA-AKI的生物标记物进行总结归纳。
Sepsis is a systemic inflammatory response syndrome caused by infection, which can lead to life-threatening organ dysfunction. Sepsis-induced acute kidney injury (SA-AKI) is a common complication in critically ill patients with high morbidity and mortality. Early diagnosis of SA-AKI is essential for clinicians to guide treatment and avoid further kidney damage. However, there are still many deficiencies in the early diagnosis of SA-AKI. How to detect and diagnose SA-AKI as early as possible has always been a hot topic in academic research. In recent years, with the in-depth study of the pathophysiological mechanism of SA-AKI, some emerging potential biomarkers have been discovered. This review aims to summarize the biomarkers of SA-AKI based on the new progress of academic research in recent years.

References

[1]  Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G.R., Chiche, J.-D., Coopersmith, C.M., Hotchkiss, R.S., Levy, M.M., Marshall, J.C., Martin, G.S., Opal, S.M., Rubenfeld, G.D., van der Poll, T., Vincent, J.-L. and Angus, D.C. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810.
https://doi.org/10.1001/jama.2016.0287
[2]  Bagshaw, S.M., Uchino, S., Bellomo, R., Morimatsu, H., Morgera, S., Schetz, M., Tan, I., Bouman, C., Macedo, E., Gibney, N., Tolwani, A., Oudemans-van Straaten, H.M., Ronco, C. and Kellum, J.A. (2007) Septic Acute Kidney Injury in Critically Ill Patients: Clinical Characteristics and Outcomes. Clinical Journal of the American Society of Nephrology, 2, 431-439.
https://doi.org/10.2215/CJN.03681106
[3]  Kolhe, N.V., Stevens, P.E., Crowe, A.V., Lipkin, G.W. and Harrison, D.A. (2008) Case Mix, Outcome and Activity for Patients with Severe Acute Kidney Injury during the First 24 Hours after Admission to an Adult, General Critical Care Unit: Application of Predictive Models from a Secondary Analysis of the ICNARC Case Mix Programme Database. Critical Care, 12, Article No. S2.
https://doi.org/10.1186/cc7003
[4]  Bagshaw, S.M., George, C., Bellomo, R., the ANZICS Database Management Committee. (2008) Early Acute Kidney Injury and Sepsis: A Multicentre Evaluation. Critical Care, 12, Article No. R47.
https://doi.org/10.1186/cc6863
[5]  Bellomo, R., Kellum, J.A., Ronco, C., Wald, R., Martensson, J., Maiden, M., Bagshaw, S.M., Glassford, N.J., Lankadeva, Y., Vaara, S.T. and Schneider, A. (2017) Acute Kidney Injury in Sepsis. Intensive Care Medicine, 43, 816-828.
https://doi.org/10.1007/s00134-017-4755-7
[6]  Li, C., Wang, W., Xie, S., Ma, W., Fan, Q., Chen, Y., He, Y., Wang, J., Yang, Q., Li, H., Jin, J., Liu, M., Meng, X. and Wen, J. (2021) The Programmed Cell Death of Macrophages, Endothelial Cells, and Tubular Epithelial Cells in Sepsis-AKI. Frontiers in Medicine, 8, Article 796724.
https://doi.org/10.3389/fmed.2021.796724
[7]  张杰, 章雄, 刘琰. 脓毒症生物标志物研究进展[J]. 中华损伤与修复杂志(电子版), 2020, 15(4): 316-321.
https://doi.org/10.3877/cma.j.issn.1673-9450.2020.04.017
[8]  Soliman, N.A. (2012) Orphan Kidney Diseases. Nephron Clinical Practice, 120, c194-c199.
https://doi.org/10.1159/000339785
[9]  Cardoso, C. and Coelho, S. (2021) Review of: “Urinary Actin, as a Potential Marker of Sepsis-Related Acute Kidney Injury: A Pilot Study.” Qeios.
https://doi.org/10.32388/RGERRR
[10]  Ostermann, M., Zarbock, A., Goldstein, S., Kashani, K., Macedo, E., Murugan, R., Bell, M., Forni, L., Guzzi, L., Joannidis, M., Kane-Gill, S.L., Legrand, M., Mehta, R., Murray, P.T., Pickkers, P., Plebani, M., Prowle, J., Ricci, Z., Rimmelé, T., Rosner, M., Shaw, A.D., Kellum, J.A. and Ronco, C. (2020) Recommendations on Acute Kidney Injury Biomarkers from the Acute Disease Quality Initiative Consensus Conference: A Consensus Statement. JAMA Network Open, 3, e2019209.
https://doi.org/10.1001/jamanetworkopen.2020.19209
[11]  Palsson, R., Colona, M.R., Hoenig, M.P., Lundquist, A.L., Novak, J.E., Perazella, M.A. and Waikar, S.S. (2020) Assessment of Interobserver Reliability of Nephrologist Examination of Urine Sediment. JAMA Network Open, 3, e2013959.
https://doi.org/10.1001/jamanetworkopen.2020.13959
[12]  Bagshaw, S.M., Haase, M., Haase-Fielitz, A., Bennett, M., Devarajan, P. and Bellomo, R. (2012) A Prospective Evaluation of Urine Microscopy in Septic and Non-Septic Acute Kidney Injury. Nephrology Dialysis Transplantation, 27, 582-588.
https://doi.org/10.1093/ndt/gfr331
[13]  Schaalan, M. and Mohamed, W. (2017) Predictive Ability of Circulating Osteoprotegerin as a Novel Biomarker for Early Detection of Acute Kidney Injury Induced by Sepsis. European Cytokine Network, 28, 52-62.
https://doi.org/10.1684/ecn.2017.0393
[14]  Wiersema, R., Jukarainen, S., Vaara, S.T., Poukkanen, M., Lakkisto, P., Wong, H., Linder, A., Van Der Horst, I.C.C. and Pettil?, V. (2020) Two Subphenotypes of Septic Acute Kidney Injury Are Associated with Different 90-Day Mortality and Renal Recovery. Critical Care, 24, Article No. 150.
https://doi.org/10.1186/s13054-020-02866-x
[15]  Donato, L.J., Meeusen, J.W., Lieske, J.C., Bergmann, D., Sparwa?er, A. and Jaffe, A.S. (2018) Analytical Performance of an Immunoassay to Measure Proenkephalin. Clinical Biochemistry, 58, 72-77.
https://doi.org/10.1016/j.clinbiochem.2018.05.010
[16]  Melo, P.S.A., Andrade, P.D.O.N., Vasconcelos, R.L., Oliveira, S.C.D., Mendes, R.C.M.G. and Linhares, F.M.P. (2021) Validation of the Knowledge, Attitude and Practice Survey on Nursing Assistance during Delivery and Childbirth. Texto & Contexto Enfermagem, 30, e20200420.
https://doi.org/10.1590/1980-265x-tce-2020-0420
[17]  Hollinger, A., Wittebole, X., Fran?ois, B., et al. (2019) Proenkephalin A 119-159 (penKid) Is an Early Biomarker of Septic Acute Kidney Injury: The Kidney in Sepsis and Septic Shock (Kid-SSS) Study. Kidney Int Rep. 2018; 3: 1424-1433. Kidney International Reports, 4, 187.
https://doi.org/10.1016/j.ekir.2018.11.006
[18]  Zarbock, A., Nadim, M.K., Pickkers, P., Gomez, H., Bell, S., Joannidis, M., Kashani, K., Koyner, J.L., Pannu, N., Meersch, M., Reis, T., Rimmelé, T., Bagshaw, S.M., Bellomo, R., Cantaluppi, V., Deep, A., De Rosa, S., Perez-Fernandez, X., Husain-Syed, F., Kane-Gill, S.L., Kelly, Y., Mehta, R.L., Murray, P.T., Ostermann, M., Prowle, J., Ricci, Z., See, E.J., Schneider, A., Soranno, D.E., Tolwani, A., Villa, G., Ronco, C. and Forni, L.G. (2023) Sepsis-Associated Acute Kidney Injury: Consensus Report of the 28th Acute Disease Quality Initiative Workgroup. Nature Reviews Nephrology, 19, 401-417.
https://doi.org/10.1038/s41581-023-00683-3
[19]  Jia, H.-M., Cheng, L., Weng, Y.-B., Wang, J.-Y., Zheng, X., Jiang, Y.-J., Xin, X., Guo, S.-Y., Chen, C.-D., Guo, F.-X., Han, Y.-Z., Zhang, T.-E. and Li, W.-X. (2022) Cell Cycle Arrest Biomarkers for Predicting Renal Recovery from Acute Kidney Injury: A Prospective Validation Study. Annals of Intensive Care, 12, Article No. 14.
https://doi.org/10.1186/s13613-022-00989-8
[20]  Kashani, K., Al-Khafaji, A., Ardiles, T., Artigas, A., Bagshaw, S.M., Bell, M., Bihorac, A., Birkhahn, R., Cely, C.M., Chawla, L.S., Davison, D.L., Feldkamp, T., Forni, L.G., Gong, M., Gunnerson, K.J., Haase, M., Hackett, J., Honore, P. M., Hoste, E.A., Joannes-Boyau, O., Joannidis, M., Kim, P., Koyner, J.L., Laskowitz, D.T., Lissauer, M.E., Marx, G., McCullough, P.A., Mullaney, S., Ostermann, M., Rimmelé, T., Shapiro, N.I., Shaw, A.D., Shi, J., Sprague, A.M., Vincent, J.-L., Vinsonneau, C., Wagner, L., Walker, M.G., Wilkerson, R.G., Zacharowski, K. and Kellum, J.A. (2013) Discovery and Validation of Cell Cycle Arrest Biomarkers in Human Acute Kidney Injury. Critical Care, 17, Article No. R25.
https://doi.org/10.1186/cc12503
[21]  Li, Z., Tie, H., Shi, R., Rossaint, J. and Zarbock, A. (2022) Urinary [TIMP-2]·[IGFBP7]-Guided Implementation of the KDIGO Bundle to Prevent Acute Kidney Injury: A Meta-Analysis. British Journal of Anaesthesia, 128, e24-e26.
https://doi.org/10.1016/j.bja.2021.10.015
[22]  Jia, H.-M., Huang, L.-F., Zheng, Y. and Li, W.-X. (2017) Diagnostic Value of Urinary Tissue Inhibitor of Metalloproteinase-2 and Insulin-Like Growth Factor Binding Protein 7 for Acute Kidney Injury: A Meta-Analysis. Critical Care, 21, Article No. 77.
https://doi.org/10.1186/s13054-017-1660-y
[23]  Yang, L., Brooks, C.R., Xiao, S., Sabbisetti, V., Yeung, M.Y., Hsiao, L.-L., Ichimura, T., Kuchroo, V. and Bonventre, J.V. (2015) KIM-1-Mediated Phagocytosis Reduces Acute Injury to the Kidney. Journal of Clinical Investigation, 125, 1620-1636.
https://doi.org/10.1172/JCI75417
[24]  Pei, Y., Zhou, G., Wang, P., Shi, F., Ma, X. and Zhu, J. (2022) Serum Cystatin C, Kidney Injury Molecule-1, Neutrophil Gelatinase-Associated Lipocalin, Klotho and Fibroblast Growth Factor-23 in the Early Prediction of Acute Kidney Injury Associated with Sepsis in a Chinese Emergency Cohort Study. European Journal of Medical Research, 27, Article No. 39.
https://doi.org/10.1186/s40001-022-00654-7
[25]  Vaidya, V.S., Ford, G.M., Waikar, S.S., Wang, Y., Clement, M.B., Ramirez, V., Glaab, W.E., Troth, S.P., Sistare, F.D., Prozialeck, W.C., Edwards, J.R., Bobadilla, N.A., Mefferd, S.C. and Bonventre, J.V. (2009) A Rapid Urine Test for Early Detection of Kidney Injury. Kidney International, 76, 108-114.
https://doi.org/10.1038/ki.2009.96
[26]  Mishra, J., Ma, Q., Prada, A., Mitsnefes, M., Zahedi, K., Yang, J., Barasch, J. and Devarajan, P. (2003) Identification of Neutrophil Gelatinase-Associated Lipocalin as a Novel Early Urinary Biomarker for Ischemic Renal Injury. Journal of the American Society of Nephrology, 14, 2534-2543.
https://doi.org/10.1097/01.ASN.0000088027.54400.C6
[27]  Marakala, V. (2022) Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Kidney Injury—A Systematic Review. Clinica Chimica Acta, 536, 135-141.
https://doi.org/10.1016/j.cca.2022.08.029
[28]  Mishra, J., Mori, K., Ma, Q., Kelly, C., Barasch, J. and Devarajan, P. (2004) Neutrophil Gelatinase-Associated Lipocalin: A Novel Early Urinary Biomarker for Cisplatin Nephrotoxicity. American Journal of Nephrology, 24, 307-315.
https://doi.org/10.1159/000078452
[29]  Si Nga, H., Medeiros, P., Menezes, P., Bridi, R., Balbi, A. and Ponce, D. (2015) Sepsis and AKI in Clinical Emergency Room Patients: The Role of Urinary NGAL. BioMed Research International, 2015, Article ID: 413751.
https://doi.org/10.1155/2015/413751
[30]  Wenzel, J., Spyropoulos, D., Assmann, J.C., Khan, M.A., St?lting, I., Lembrich, B., Krei?ig, S., Ridder, D.A., Isermann, B. and Schwaninger, M. (2020) Endogenous THBD (Thrombomodulin) Mediates Angiogenesis in the Ischemic Brain—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 2837-2844.
https://doi.org/10.1161/ATVBAHA.120.315061
[31]  Li, Q., Yang, W., Zhao, K., Sun, X. and Bao, L. (2021) Thrombomodulin Gene Polymorphism and the Occurrence and Prognostic Value of Sepsis Acute Kidney Injury. Medicine, 100, e26293.
https://doi.org/10.1097/MD.0000000000026293
[32]  Katayama, S. (2017) Markers of Acute Kidney Injury in Patients with Sepsis: The Role of Soluble Thrombomodulin. Critical Care, 21, Article No. 229.
https://doi.org/10.1186/s13054-017-1815-x
[33]  Raghavan, M., Venkataraman, R. and Kellum, J.A. (2007) Sepsis-Induced Acute Renal Failure and Recovery. In: Abraham, E. and Singer, M., Eds., Mechanisms of Sepsis-Induced Organ Dysfunction and Recovery, Springer, Berlin, 393-405.
https://doi.org/10.1007/3-540-30328-6_28
[34]  Boekhoud, L., Koeze, J., Van Der Slikke, E.C., Bourgonje, A.R., Moser, J., Zijlstra, J.G., Muller Kobold, A.C., Bulthuis, M.L.C., Van Meurs, M., Van Goor, H. and Bouma, H.R. (2020) Acute Kidney Injury Is Associated with Lowered Plasma-Free Thiol Levels. Antioxidants, 9, Article 1135.
https://doi.org/10.3390/antiox9111135
[35]  Van Der Slikke, E.C., Boekhoud, L., Bourgonje, A.R., Olgers, T.J., Ter Maaten, J.C., Henning, R.H., Van Goor, H. and Bouma, H.R. (2022) Plasma Free Thiol Levels during Early Sepsis Predict Future Renal Function Decline. Antioxidants, 11, Article 800.
https://doi.org/10.3390/antiox11050800
[36]  K?szegi, T., Horváth-Szalai, Z., Ragán, D., Kósa, B., Szirmay, B., Kurdi, C., Kovács, G.L. and Mühl, D. (2023) Measurement of Urinary Gc-Globulin by a Fluorescence ELISA Technique: Method Validation and Clinical Evaluation in Septic Patients—A Pilot Study. Molecules, 28, Article 6864.
https://doi.org/10.3390/molecules28196864
[37]  Aomatsu, A., Kaneko, S., Yanai, K., Ishii, H., Ito, K., Hirai, K., Ookawara, S., Kobayashi, Y., Sanui, M. and Morishita, Y. (2022) MicroRNA Expression Profiling in Acute Kidney Injury. Translational Research, 244, 1-31.
https://doi.org/10.1016/j.trsl.2021.11.010
[38]  Glinge, C., Clauss, S., Boddum, K., Jabbari, R., Jabbari, J., Risgaard, B., Tomsits, P., Hildebrand, B., K??b, S., Wakili, R., Jespersen, T. and Tfelt-Hansen, J. (2017) Stability of Circulating Blood-Based MicroRNAs—Pre-Analytic Methodological Considerations. PLOS ONE, 12, e0167969.
https://doi.org/10.1371/journal.pone.0167969
[39]  Guo, C., Dong, G., Liang, X. and Dong, Z. (2019) Epigenetic Regulation in AKI and Kidney Repair: Mechanisms and Therapeutic Implications. Nature Reviews Nephrology, 15, 220-239.
https://doi.org/10.1038/s41581-018-0103-6
[40]  Liu, Z., Yang, D., Gao, J., Xiang, X., Hu, X., Li, S., Wu, W., Cai, J., Tang, C., Zhang, D. and Dong, Z. (2020) Discovery and Validation of miR-452 as an Effective Biomarker for Acute Kidney Injury in Sepsis. Theranostics, 10, 11963-11975.
https://doi.org/10.7150/thno.50093

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133