|
扶正散结方对肺腺癌Bax、Bcl-2表达及肿瘤生长的影响
|
Abstract:
目的:观察扶正散结方对肺腺癌Bax、Bcl-2表达及肿瘤生长的作用效果。方法:建立肺腺癌H1299细胞裸鼠移植瘤模型,将20只荷瘤鼠随机分成模型对照组(后简称对照组)和扶正散结方干预组(2.275 g/mL) (后简称扶正散结方组)、扶正散结方联合阳性药物替吉奥干预组(后简称联合组)及阳性药物替吉奥对照组(后简称阳照组),每1 d灌胃给药1次,于每次给药前测定各组荷瘤鼠体质量,药物干预21 d后处死小鼠,剥离瘤体并称量瘤体质量,采用免疫组织化学染色检测不同处理组细胞Bax、Bcl-2表达水平。同时体外培养H1299细胞,应用细胞计数试剂盒(CCK-8)检测不同浓度扶正散结方对细胞增殖的影响。结果:与对照组[(22.8 1.0) g]比较,联合组[(19.10 ± 1.18) g]、阳照组[(20.10 ± 0.17) g]干预21 d后小鼠体质量增长均有明显下降(P < 0.05)。与对照组瘤体质量(2.02 ± 0.38) g相比,扶正散结方组、联合组、阳照组瘤体质量分别为(0.77 ± 0.25) g、(0.64 ± 0.43) g、(0.74 ± 0.27) g,与对照组相比均明显减少,差异有统计学意义(P < 0.05)。免疫组化结果显示,扶正散结方组、联合组和阳照组的Bax蛋白表达水平均高于对照组,Bcl-2表达水平低于对照组,差异均有统计学意义(P < 0.05)。各浓度扶正散结方均可对体外培养的H1299细胞的增殖产生抑制效果,且此抑制效果随药物浓度增加与干预时间延长而提高。结论:扶正散结方对肺腺癌生长具有抑制作用,其可通过上调促凋亡蛋白,下调抗凋亡蛋白的表达达成上述目标。同时体外实验也证明,扶正散结方对肺腺癌H1299细胞的增殖具有抑制作用。即扶正散结方可通过促进凋亡及抑制增殖两方面实现抑制肿瘤生长。
Objective: To observe the effects of Fu Zheng San Jie Fang on the expression of Bax and Bcl-2 and tumour growth in lung adenocarcinoma. Methods: A lung adenocarcinoma transplantation model was established in nude mice with H1299 cells, and 20 tumor-bearing mice were randomly divided into a model control group (later referred to as the control group), an intervention group of Fu Zheng San Jie Fang (2.275 g/mL) (later referred to as the group of Fu Zheng San Jie Fang), an intervention group of Fu Zheng San Jie Fang combined with a positive drug, Tegio (later referred to as the combined group), and a control group of a positive drug, Tegio (later referred to as the positive control group), and the drug was administered by gavage once every 1 d. The body mass of rats in each group was measured before each administration of the drug, and the mice were executed after 21 d of drug intervention, the tumours were stripped and weighed, and the expression levels of Bax and Bcl-2 in the cells of different treatment groups were detected by immunohistochemical staining. At the same time, H1299 cells were cultured in vitro, and a cell counting kit (CCK-8) was applied to detect the effects of different concentrations of Fu Zheng San Jie Fang on cell proliferation. Results: Compared with the control group [(22.8 1.0) g], there was a significant decrease in the growth of body mass of mice in the combined group [(19.10 ± 1.18) g] and the Yang-photographed group [(20.10 ± 0.17) g] after 21 d of the intervention (P < 0.05). Compared with the tumour mass of the control group (2.02 ± 0.38) g, the tumour mass of the Fu Zheng San Jie Fang group, the combined group and the Yang Zhi group were (0.77 ± 0.25) g, (0.64 ± 0.43) g and (0.74 ± 0.27) g,
[1] | Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics2020:Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. https://doi.org/10.3322/caac.21660 |
[2] | Tada, A., Kato, H. and Hasegawa, S. (2000) Antagonistic Effect of EGF Against TGF Beta1 on Transformed Phenotype and Tropomyosin Expression of Human Lung Carcinoma A549 Cells. Oncology Reports, 7, 1323-1326. https://doi.org/10.3892/or.7.6.1323 |
[3] | 中华医学会肿瘤学分会, 中华医学会杂志社. 中华医学会肿瘤学分会肺癌临床诊疗指南(2021版) [J]. 中华肿瘤杂志, 2021, 43(6): 591-621. https://doi.org/10.3760/cma.j.cn112152-20210207-00118 |
[4] | Xu, Z.H., Zhu, Y.Z., Su, L., et al. (2021) Ze-Qi-Tang Formula Induces Granulocytic Myeloid-Derived Suppressor Cell Apoptosis via STAT3/S100A9/Bcl-2/Caspase-3 Signaling to Prolong the Survival of Mice with Orthotopic Lung Cancer. Mediators of Inflammation, 2021, Article ID: 8856326. https://doi.org/10.1155/2021/8856326 |
[5] | Sun, Z.D., Shen, K.P., Xie, Y.G., et al. (2021) Shiquan Yuzhen Decoction Inhibits Angiogenesis and Tumor Apoptosis Caused by Non-Small Cell Lung Cancer and Promotes Immune Response. American Journal of Translational Research, 13, 7492-7507. |
[6] | 吴剑, 滕国英. 中药诱导肿瘤细胞凋亡的研究进展[J]. 国际医药卫生导报, 2007, 13(8): 114-117. https://doi.org/10.3760/cma.j.issn.1007-1245.2007.08.045 |
[7] | 郭平, 梁广, 杨树林. 莪术醇的医药研究进展[J]. 中国医药, 2016, 11(5): 768-772. https://doi.org/10.3760/cma.j.issn.1673-4777.2016.05.036 |
[8] | 王迪, 赵健, 周天, 等. 黄精多糖药理作用机制研究进展[J]. 国际中医中药杂志, 2023, 45(1): 122-125. |
[9] | Zheng, S. (2020) Protective Effect of Polygonatum Sibiricum Polysaccharide on D-Galactose-Induced Aging Rats Model. Scientific Reports, 10, Article No. 2246. https://doi.org/10.1038/s41598-020-59055-7 |
[10] | 尹新军, 王贝贝, 李新建, 等. 黄精多糖对自身免疫性心肌炎大鼠JAK/STAT通路及心肌纤维化的影响[J]. 免疫学杂志, 2021, 37(1):26-32. https://doi.org/10.13431/j.cnki.immunol.j.20210004 |
[11] | 丁杰英, 李嘉斌, 郑妮. 滇黄精多糖对四氯化碳所致肝损伤大鼠氧化因子、凋亡因子的影响[J]. 广西医科大学学报, 2020, 37(10): 1766-1771. https://doi.org/10.16190/j.cnki.45-1211/r.2020.10.002 |
[12] | 田彦璋, 高飞, 赵海潮, 等. 黄芪甲苷逆转人肝癌HepG2/GCS细胞多药耐药的作用及其机制[J]. 中华肝胆外科杂志, 2018, 24(8):555-559. https://doi.org/10.3760/cma.j.issn.1007-8118.2018.08.014 |
[13] | 蔡秀珍, 张曼, 刘涛. 黄芪甲苷抑制胰腺癌PANC1细胞恶性生物学行为及其作用机制[J]. 中华胰腺病杂志, 2021, 21(2): 132-134. https://doi.org/10.3760/cma.j.cn115667-20191206-00106 |
[14] | 金红, 杨岚, 张黎, 等. 双氢青蒿素和吉非替尼联用对肺癌NCI-H1975细胞凋亡相关蛋白Bax与Bcl-2表达的影响[J]. 中国老年学杂志, 2019, 39(23): 5806-5810. |
[15] | Yu, J., Jiang, P., Zhao, K., et al. (2021) Role of DACH1 on Proliferation, Invasion, and Apoptosis in Human Lung Adenocarcinoma Cells. Current Molecular Medicine, 21, 806-811. https://doi.org/10.2174/1566524021666210119094633 |
[16] | 薛斌. 二氢青蒿素抑制瘢痕疙瘩成纤维细胞增殖机制研究[D]: [博士学位论文]. 重庆: 重庆医科大学, 2007. |
[17] | Chipuk, J.E., Moldoveanu, T., Llambi, F., et al. (2010) The BCL-2 Family Reunion. Molecular Cell, 37, 299-310. https://doi.org/10.1016/j.molcel.2010.01.025 |
[18] | McDonnell, T.J., Troncoso, P. and Brisbay, S.M. (1992) Expression of the Protooncogene Bcl-2 in the Prostate and Its Association with Emergence of Androgen-Independent Prostate Cancer. Cancer Research, 52, 6940-6944. |
[19] | Rajavel, T., Packiyaraj, P., Suryanarayanan, V., et al. (2018) β-Sitosterol Targets Trx/Trxl Reductase to Induce Apoptosis in A549 Cells via ROS Mediated Mitochondrial Dysregulation and P53 Activation. Scientific Reports, 8, Article No. 2071. https://doi.org/10.1038/s41598-018-20311-6 |
[20] | Liu, L., Huang, L., He, J., et al. (2019) PTEN Inhibits Nonsmall Cell Cancer Cell Growth by Promoting G0/G1 Arrest and Cell Apoptos. Oncology Letters, 17, 1333-1340. https://doi.org/10.3892/ol.2018.9719 |
[21] | 李元滨, 林丽珠, 王超, 等. 益气除痰方联合顺铂对肺癌耐药皮下移植瘤生长及Bax、Bcl-2表达的影响[J]. 中华中医药杂志, 2019, 34(2): 755-758. |
[22] | 刘大锐, 李报春, 李怀东. 细胞凋亡核心基因Caspase家族的研究进展[J]. 中国医药导刊, 2020, 22(11): 800-805. |
[23] | Cheng, E.H., Kirsch, D.G., Clem, R.J., et al. (1997) Conversion of Bcl-2 to a Bax-Like Death Effector by Caspases. Science, 278, 1966-1968. https://doi.org/10.1126/science.278.5345.1966 |
[24] | Gudipaty, S.A., Conner, C.M., Rosenblatt, J. and Montell, D.J. (2018) Unconventional Ways to Live and Die: Cell Death and Survival in Development, Homeostasis, and Disease. Annual Review of Cell and Developmental Biology, 34, 311-332. https://doi.org/10.1146/annurev-cellbio-100616-060748 |
[25] | Renault, T.T., Teijido, O., Antonsson, B., et al. (2013) Regulation of Bax Mitochondrial Localization by Bcl-2 and Bcl-XL: Keep Your Friends Close But Your Enemies Closer. The International Journal of Biochemistry & Cell Biology, 45, 64-67. https://doi.org/10.1016/j.biocel.2012.09.022 |