All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

营养元素调控水稻叶夹角研究现状
Current Status of Studies on the Regulation of Leaf Angle by Nutritional Elements in Rice

DOI: 10.12677/ije.2024.132015, PP. 113-119

Keywords: 营养元素,农艺性状,产量
Nutritional Elements
, Agronomic Traits, Yield

Full-Text   Cite this paper   Add to My Lib

Abstract:

水稻是主要的粮食作物之一,其产量的增加对于人类的生存至关重要。增加水稻产量的方法主要是通过改变其农艺性状,如通过增大叶夹角改变水稻接受光合作用的叶面积,从而增强光合作用,而增加产量。叶夹角特性作为构建理想植株结构的要素之一,同时也是高密度栽植模式下的决定性因素,有望助益于提升绿色革命品种产量,对于农业进步及粮食保障均具有深远影响。营养元素氮(N)、磷(P)、钾(K)和锌(Zn)通过影响植物激素如油菜素内脂、生长素以及赤霉素等,从而改变其叶夹角等农艺性状,最终达到增加产量的目的。本文对营养元素影响叶夹角等农艺性状进行一个综述,为优化水稻株型,提高产量提供了一定方向支持。
Rice is one of the major food crops and its increased yield is essential for human survival. The main way to increase the yield of rice is by modifying its agronomic traits, such as by increasing the leaf angle to change the leaf area that receives photosynthesis, thus enhancing photosynthesis and thereby increasing the yield. Leaf angle characteristics, as one of the elements in building an ideal plant structure and as a determining factor in high-density planting patterns, are expected to contribute to the enhancement of yields in Green Revolution varieties, with far-reaching implications for both agricultural progress and food security. Nutrients nitrogen (N), phosphorus (P), potassium (K) and zinc (Zn) influence phytohormones such as oleoresinolipids, growth hormones and gibberellins to alter agronomic traits such as leaf angle and ultimately increase yield. This paper provides a review of the effects of nutrients on leaf angle and other agronomic traits, and provides some direction to optimise rice plant type and increase yield.

References

[1]  Li, T., Liao, K., Xu, X., et al. (2017) Wheat Ammonium Transporter (AMT) Gene Family: Diversity and Possible Role in Host-Pathogen Interaction with Stem Rust. Frontiers in Plant Science, 8, Article 1637.
https://doi.org/10.3389/fpls.2017.01637
[2]  Westheimer, F.H. (1987) Why Nature Chose Phosphates. Science, 235, 1173-1178.
https://doi.org/10.1126/science.2434996
[3]  Wang, Y.P., Law, R.M. and Pak, B. (2010) A Global Model of Carbon, Nitrogen and Phosphorus Cycles for the Terrestrial Biosphere. Biogeosciences, 7, 2261-2282.
https://doi.org/10.5194/bg-7-2261-2010
[4]  Martins, R.C. and Silva, C.L.M. (2003) Kinetics of Frozen Stored Green Bean (Phaseolus vulgaris l.) Quality Changes: Texture, Vitamin C, Reducing Sugars, and Starch. Journal of Food Science, 68, 2232-2237.
https://doi.org/10.1111/j.1365-2621.2003.tb05752.x
[5]  马全民, 饶立华, 陆定志. 钾调节茎用芥菜同化物运输及茎部膨大的作用机理[J]. 园艺学报, 1992(4): 347-352, 389.
[6]  史春余, 王振林, 赵秉强, 等. 钾营养对甘薯某些生理特性和产量形成的影响[J]. 植物营养与肥料学报, 2002, 8(1): 81-85.
[7]  胡丽娜. 微量元素对植物的作用[J]. 现代农业, 2014(7): 25.
[8]  Song, Q., Zhang, G. and Zhu, X.G. (2013) Optimal Crop Canopy Architecture to Maximise Canopy Photosynthetic Co2 Uptake under Elevated Co2—A Theoretical Study Using a Mechanistic Model of Canopy Photosynthesis. Functional Plant Biology, 40, 108-124.
https://doi.org/10.1071/FP12056
[9]  Song, Y., You, J. and Xiong, L. (2009) Characterization of OsIAA1 Gene, a Member of Rice Aux/IAA Family Involved in Auxin and Brassinosteroid Hormone Responses and Plant Morphogenesis. Plant Molecular Biology, 70, 297-309.
https://doi.org/10.1007/s11103-009-9474-1
[10]  Law, C.J., Maloney, P.C. and Wang, D.N. (2008) Ins and Outs of Major Facilitator Superfamily Antiporters. Annual Review of Microbiology, 62, 289-305.
https://doi.org/10.1146/annurev.micro.61.080706.093329
[11]  陈迪, 潘伟槐, 周哉材, 等. 植物营养元素运输载体的功能及其调控机制研究进展[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 283-293.
[12]  郑璐, 包媛媛, 张鑫臻, 等. 植物磷转运蛋白基因的研究进展[J]. 生态环境学报, 2017, 26(2): 342-349.
[13]  Milner, M.J., Seamon, J., Craft, E., et al. (2013) Transport Properties of Members of the ZIP Family in Plants and Their Role in Zn and Mn Homeostasis. Journal of Experimental Botany, 64, 369-381.
https://doi.org/10.1093/jxb/ers315
[14]  Ishimaru, Y., Bashir, K. and Nishizawa, N.K. (2011) Zn Uptake and Translocation in Rice Plants. Rice, 4, 21-27.
https://doi.org/10.1007/s12284-011-9061-3
[15]  薛欣月, 于雪然, 刘晓刚, 等. 水稻锌吸收、转运、累积机理研究进展[J]. 生物技术通报,2022, 38(4): 29-43.
[16]  贺勇, 孙焕良, 孟桂元. 水稻叶片形态研究进展[J]. 作物研究,2008, 22(S1): 378-380.
[17]  Wada, K., Marumo, S., Ikekawa, N., et al. (1981) Brassinolide and Homobrassinolide Promotion of Lamina Inclination of Rice Seedlings. Plant and Cell Physiology, 22, 323-325.
https://doi.org/10.1093/oxfordjournals.pcp.a076173
[18]  Choi, Y.-H., Fujioka, S., Harada, A., et al. (1996) A Brassinolide Biosynthetic Pathway via 6-Deoxocastasterone. Phytochemistry, 43, 593-596.
https://doi.org/10.1016/0031-9422(96)00342-1
[19]  Fujioka, S., Noguchi, T., Watanabe, T., et al. (2000) Biosynthesis of Brassinosteroids in Cultured Cells of Catharanthus roseus. Phytochemistry, 53, 549-553.
https://doi.org/10.1016/S0031-9422(99)00582-8
[20]  Noguchi, T., Fujioka, S., Choe, S., et al. (2000) Biosynthetic Pathways of Brassinolide in Arabidopsis. Plant Physiology, 124, 201-209.
https://doi.org/10.1104/pp.124.1.201
[21]  Bai, M.Y., Zhang, L.Y., Gampala, S.S., et al. (2007) Functions of OsBZR1 and 14-3-3 Proteins in Brassinosteroid Signaling in Rice. Proceedings of the National Academy of Sciences of the United States of America, 104, 13839-13844.
https://doi.org/10.1073/pnas.0706386104
[22]  Tong, H., Jin, Y., Liu, W., et al. (2009) Dwarf and Low-Tillering, a New Member of the GRAS Family, Plays Positive Roles in Brassinosteroid Signaling in Rice. The Plant Journal, 58, 803-816.
https://doi.org/10.1111/j.1365-313X.2009.03825.x
[23]  Tong, H., Liu, L., Jin, Y., et al. (2012) Dwarf and Low-Tillering Acts as a Direct Downstream Target of a GSK3/SHAGGY-Like Kinase to Mediate Brassinosteroid Responses in Rice. The Plant Cell, 24, 2562-2577.
https://doi.org/10.1105/tpc.112.097394
[24]  Tanabe, S., Ashikari, M., Fujioka, S., et al. (2005) A Novel Cytochrome P450 Is Implicated in Brassinosteroid Biosynthesis via the Characterization of a Rice Dwarf Mutant, dwarf11, with Reduced Seed Length. The Plant Cell, 17, 776-790.
https://doi.org/10.1105/tpc.104.024950
[25]  Tanaka, A., Nakagawa, H., Tomita, C., et al. (2009) Brassinosteroid Upregulated1, Encoding a Helix-Loop-Helix Protein, Is a Novel Gene Involved in Brassinosteroid Signaling and Controls Bending of the Lamina Joint in Rice. Plant Physiology, 151, 669-680.
https://doi.org/10.1104/pp.109.140806
[26]  Bian, H., Xie, Y., Guo, F., et al. (2012) Distinctive Expression Patterns and Roles of the miRNA393/TIR1 Homolog Module in Regulating Flag Leaf Inclination and Primary and Crown Root Growth in Rice (Oryza sativa). The New Phytologist, 196, 149-161.
https://doi.org/10.1111/j.1469-8137.2012.04248.x
[27]  Zhang, S., Wang, S., Xu, Y., et al. (2015) The Auxin Response Factor, OsARF19, Controls Rice Leaf Angles through Positively Regulating OsGH3-5 and OsBRI1. Plant, Cell & Environment, 38, 638-654.
https://doi.org/10.1111/pce.12397
[28]  Gan, L., Wu, H., Wu, D., et al. (2015) Methyl Jasmonate Inhibits Lamina Joint Inclination by Repressing Brassinosteroid Biosynthesis and Signaling in Rice. Plant Science, 241, 238-245.
https://doi.org/10.1016/j.plantsci.2015.10.012
[29]  Li, X., Sun, S., Li, C., et al. (2014) The Strigolactone-Related Mutants Have Enhanced Lamina Joint Inclination Phenotype at the Seedling Stage. Journal of Genetics and Genomics, 41, 605-608.
https://doi.org/10.1016/j.jgg.2014.09.004
[30]  Shimada, A., Ueguchi-Tanaka, M., Sakamoto, T., et al. (2006) The Rice SPINDLY Gene Functions as a Negative Regulator of Gibberellin Signaling by Controlling the Suppressive Function of the DELLA Protein, SLR1, and Modulating Brassinosteroid Synthesis. The Plant Journal, 48, 390-402.
https://doi.org/10.1111/j.1365-313X.2006.02875.x
[31]  Sakamoto, T., Morinaka, Y., Ohnishi, T., et al. (2006) Erect Leaves Caused by Brassinosteroid Deficiency Increase Biomass Production and Grain Yield in Rice. Nature Biotechnology, 24, 105-109.
https://doi.org/10.1038/nbt1173
[32]  Salchert, K., Bhalerao, R., Koncz-Kálmán, Z., et al. (1998) Control of Cell Elongation and Stress Responses by Steroid Hormones and Carbon Catabolic Repression in Plants. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 353, 1517-1520.
https://doi.org/10.1098/rstb.1998.0307

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413