全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于用户坐标距离与误差修正的推荐算法
Recommendation Algorithm Based on User Coordinate Distance and Error Correction

DOI: 10.12677/mos.2024.133185, PP. 2000-2010

Keywords: 推荐系统,相似性网络,评分距离,合成坐标,误差修正
Recommender System
, Similarity Network, Rating Distance, Synthetic Coordinates, Error Correction

Full-Text   Cite this paper   Add to My Lib

Abstract:

推荐系统是一种根据用户历史行为、社交关系等信息去判断用户感兴趣的物品的智能系统,它可以有效的解决互联网信息过载的问题,因此具有重要的研究意义和广泛应用价值。为了解决推荐算法存在准确性有待提升和可扩展性不足的问题,本文提出了一种带有相似性选择和误差修正的用户坐标与评分距离推荐算法。该算法首先基于用户间相似性筛选出正相关的邻居,针对筛选后的邻居集合计算评分距离。然后建立用户间评分距离的合成坐标模型,与得到的用户坐标间距离进行评分预测。最后基于训练题设计误差修正算法,进一步提升预测准确度。通过本文算法与其他推荐算法在MovieLens数据集上进行对比,试验结果表明,该算法可以有效提高推荐算法的预测准确性和可扩展性。研究揭示了利用用户坐标距离进行预测的可行性,为进一步研究推荐系统的性能提升和运行机理提供了有效的依据。
The recommendation system is an intelligent system that determines the items that the user is interested in based on the user’s historical behavior, social relationships and other information. It can effectively solve the problem of Internet information overload, so it has important research significance and wide application value. In order to solve the problems of recommendation algorithm that needs to be improved in accuracy and insufficient scalability, this paper proposes a user coordinate and rating distance recommendation algorithm with similarity selection and error correction. The algorithm first selects positively correlated neighbors based on the similarity between users, and calculates the scoring distance for the filtered neighbor set. Then a synthetic coordinate model of the rating distance between users is established, and the rating prediction is performed with the obtained distance between user coordinates. Finally, an error correction algorithm is designed based on the training questions to further improve the prediction accuracy. By comparing the algorithm in this article with other recommendation algorithms on the MovieLens data set, the experimental results show that the algorithm can effectively improve the prediction accuracy and scalability of the recommendation algorithm. The research reveals the feasibility of using user coordinate distance for prediction, and provides an effective basis for further research on the performance improvement and operating mechanism of the recommendation system.

References

[1]  Jalili, M., Ahmadian, S., Izadi, M., et al. (2018) Evaluating Collaborative Filtering Recommender Algorithms: A Survey. IEEE Access, 6, 74003-74024.
https://doi.org/10.1109/ACCESS.2018.2883742
[2]  Yu, J., Yin, H., Xia, X., et al. (2023) Self-Supervised Learning for Recommender Systems: A Survey. IEEE Transactions on Knowledge and Data Engineering, 36, 335-355.
https://doi.org/10.1109/TKDE.2023.3282907
[3]  Li, D., Lv, Q., Shang, L., et al. (2017) Efficient Privacy-Preserving Content Recommendation for Online Social Communities. Neurocomputing, 219, 440-454.
https://doi.org/10.1016/j.neucom.2016.09.059
[4]  Kim, J.C., Jeong, H.G. and Lee, S.W. (2021) Simultaneous Target Classification and Moving Direction Estimation in Millimeterwave Radar System. Sensors, 21, Article 5228.
https://doi.org/10.3390/s21155228
[5]  Xiong, R., Wang, J., Zhang, N., et al. (2018) Deep Hybrid Collaborative Filtering for Web Service Recommendation. Expert Systems with Applications, 110, 191-205.
https://doi.org/10.1016/j.eswa.2018.05.039
[6]  赵永生, 祁云嵩. 基于改进相似度计算方法的协同过滤算法研究[J]. 计算机与数字工程, 2021, 49(3): 447-450, 541.
[7]  江水. 基于协同过滤技术推荐系统的探究[J]. 计算机技术与发展, 2021, 31(11): 1-7.
[8]  Robillard, M., Walker, R. and Zimmermann, T. (2010) Recommendation Systems for Software Engineering. IEEE Software, 27, 80-86.
https://doi.org/10.1109/MS.2009.161
[9]  Li, N. and Li, C. (2009) Accumulative Influence Weight Collaborative Filtering Recommendation Approach. In: Chien, B.C. and Hong, T.P., Eds., Opportunities and Challenges for Next-Generation Applied Intelligence, Springer, Berlin, 73-78.
https://doi.org/10.1007/978-3-540-92814-0_12
[10]  Hu, P., Yang, E., Pan, W., et al. (2022) Federated One-Class Collaborative Filtering via Privacy-Aware Non-Sampling Matrix Factorization. Knowledge-Based Systems, 253, Article ID: 109441.
https://doi.org/10.1016/j.knosys.2022.109441
[11]  Wang, Q., Wu, S., Bai, Y., et al. (2023) Neighbor Importance-Aware Graph Collaborative Filtering for Item Recommendation. Neurocomputing, 549, Article ID: 126429.
https://doi.org/10.1016/j.neucom.2023.126429
[12]  Xiao, Z.Y., et al. (2023) Generative Artificial Intelligence GPT-4 Accelerates Knowledge Mining and Machine Learning for Synthetic Biology. ACS Synthetic Biology, 12, 2973-2982.
https://doi.org/10.1021/acssynbio.3c00310
[13]  Batmaz, Z., Yurekli, A., Bilge, A. and Kaleli, C. (2019) A Review on Deep Learning for Recommender Systems: Challenges and Remedies. Artificial Intelligence Review, 52, 1-37.
https://doi.org/10.1007/s10462-018-9654-y
[14]  Lika, B., Kolomvatsos, K. and Hadjiefthymiades, S. (2014) Facing the Cold Start Problem in Recommender Systems. Expert Systems with Applications, 41, 2065-2073
[15]  Zeng, C., Xing, C.X., Zhou, L.Z. and Zheng, X.H. (2004) Similarity Measure and Instance Selection for Collaborative Filtering. International Journal of Electronic Commerce, 8, 115-129.
https://doi.org/10.1080/10864415.2004.11044314
[16]  Shardanand, U. and Maes, P. (1995) Social Information Filtering: Algorithms for Automating “Word of Mouth”. Proceedings of the SIGCHI Conference on Human Factorsin Computing Systems, Denver, 7-11 May 1995, 210-217.
https://doi.org/10.1145/223904.223931
[17]  Mana, S.C. and Sasipraba, T. (2021) Research on Cosine Similarity and Pearson Correlation Based Recommendation Models. Journal of Physics, 1770, Article ID: 012014.
https://doi.org/10.1088/1742-6596/1770/1/012014
[18]  Bag, S., Kumar, S.K. and Tiwari, M.K. (2019) An Efficient Recommendation Generation Using Relevant Jaccard Similarity. Information Sciences, 483, 53-64.
https://doi.org/10.1016/j.ins.2019.01.023
[19]  Dabek, F., Cox, R., Kaashoek, F., et al. (2004) Vivaldi: A Decentralized Network Coordinate System. Proceedings of the 2004 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, Portland, 30 August-3 September 2004, 15-26.
https://doi.org/10.1145/1015467.1015471
[20]  Panagiotakis, H., Panagiotakis, C. and Fragopoulou, P. (2017) SCoR: A Synthetic Coordinate Based Recommender System. Expert Systems with Application, 79, 8-19.
https://doi.org/10.1016/j.eswa.2017.02.025
[21]  Song, S., Chaudhuri, K. and Sarwate, A.D. (2015) Learning from Data with Heterogeneous Noise Using SGD. arXiv: 1412.5617.
[22]  Panagiotakis, C., Papadakis, H., Papagrigoriou, A., et al. (2021) Improving Recommender Systems via a Dual Training Error Based Correction Approach. Expert Systems with Applications, 183, Article ID: 115386.
https://doi.org/10.1016/j.eswa.2021.115386
[23]  Dooms, S., Bellogín, A., Pessemier, T.D., et al. (2016) A Framework for Dataset Benchmarking and Its Application to a New Movie Rating Dataset. ACM Transactions on Intelligent Systems and Technology, 7, 1-28.
https://doi.org/10.1145/2751565
[24]  He, X.S., Zhou, M.Y., Zhuo, Z., et al. (2015) Predicting Online Ratings Based on the Opinion Spreading Process. Physica A: Statistical Mechanics and Its Applications, 436, 658-664.
https://doi.org/10.1016/j.physa.2015.05.066
[25]  Lee, S. (2020) Using Entropy for Similarity Measures in Collaborative Filtering. Journal of Ambient Intelligence and Humanized Computing, 11, 363-374.
https://doi.org/10.1007/s12652-019-01226-0
[26]  Ai, J., Cai, Y., Su, Z., et al. (2022) Predicting User-Item Links in Recommender Systems Based on Similarity-Network Resource Allocation. Chaos, Solitons and Fractals, 158, Article ID: 112032.
https://doi.org/10.1016/j.chaos.2022.112032
[27]  Su, Z., Zheng, X., Ai, J., et al. (2020) Link Prediction in Recommender Systems Based on Vector Similarity. Physica A: Statistical Mechanics and Its Applications, 560, Article ID: 125154.
https://doi.org/10.1016/j.physa.2020.125154
[28]  Willmott, C.J. and Matsuura, K. (2005) Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance. Climate Research, 30, 79-82.
https://doi.org/10.3354/cr030079
[29]  Javed, U., Shaukat, K., Hameed, I.A., et al. (2021) A Review of Content-Based and Context-Based Recommendation Systems. International Journal of Emerging Technologies in Learning, 16, 274-306.
https://doi.org/10.3991/ijet.v16i03.18851
[30]  Madadipouya, K. and Chelliah, S. (2017) A Literature Review on Recommender Systems Algorithms, Techniques and Evaluations. BRAIN. Broad Research in Artificial Intelligence and Neuroscience, 8, 109-124.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133