全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

T细胞在白癜风中的致病机制及靶向治疗的研究进展
Pathogenic Mechanism of T Cells in Vitiligo and Research Progress of Targeted Therapy

DOI: 10.12677/acm.2024.1451401, PP. 95-101

Keywords: 白癜风,T淋巴细胞,发病机制,黑素细胞,靶向免疫治疗
Vitiligo
, T Lymphocytes, Pathogenesis, Melanocytes, Targeted Immunotherapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

白癜风是一种常见的慢性皮肤病,以局部或泛发性皮肤色素脱失为特征,病因和发病机制尚不清楚。目前普遍认为自身免疫、神经内分泌、氧化应激、遗传易感和环境因素等因素相互作用导致了白癜风的发生。随着研究的深入,人们发现T淋巴细胞在白癜风的致病机制中起着关键作用。特别是,CD8 T细胞被确认为主要罪魁祸首,协调对黑素细胞的有针对性攻击和凋亡。组织驻留记忆T细胞(TRM)导致白癜风的复发,调节性T细胞(Treg)水平下降和功能受损成为白癜风患者免疫失衡的主要因素等。本文全面回顾了T淋巴细胞在白癜风发病机制中的作用机制,并讨论了相关靶向治疗如JAK抑制剂的策略以及未来的研究方向,从而为白癜风的免疫发病机制和免疫治疗提供了新的见解。
Vitiligo is a common chronic skin disease characterised by localised or generalised skin pigmentation loss, and the etiology and pathogenesis are still unclear. It is now generally accepted that the interaction of autoimmune, neuroendocrine, oxidative stress, genetic susceptibility and environmental factors leads to the development of vitiligo. With the deepening of research, it has been found that T lymphocytes play a key role in the pathogenesis of vitiligo. In particular, CD8 T cells were identified as the main culprits, coordinating targeted attacks on melanocytes and apoptosis. Tissue-resident memory (TRM) T cells contribute to the recurrence of vitiligo, and decreased levels and impaired function of regulatory T cells (Treg) have been identified as a major factor in the immune imbalance of vitiligo patients, among others. In this paper, we comprehensively review the mechanisms of T lymphocytes in the pathogenesis of vitiligo and discuss the strategies of relevant targeted therapies such as JAK inhibitors as well as future research directions, thus providing new insights into the immunopathogenesis and immunotherapy of vitiligo.

References

[1]  Okamura, K., Kabasawa, T., Saito, T., et al. (2024) Resident Memory T Cell Contributes to the Phenotype of Inflammatory Vitiligo. Journal of Dermatological Science, 113, 74-76.
https://doi.org/10.1016/j.jdermsci.2024.01.002
[2]  Shah, F., Giri, P.S., Bharti, A.H., et al. (2024) Compromised Melanocyte Survival Due to Decreased Suppression of CD4 & CD8 Resident Memory T Cells by Impaired TRM-Regulatory T Cells in Generalized Vitiligo Patients. Experimental Dermatology, 33, E14982.
https://doi.org/10.1111/exd.14982
[3]  Shah, F., Patel, S., Begum, R., et al. (2021) Emerging Role of Tissue Resident Memory T Cells in Vitiligo: From Pathogenesis to Therapeutics. Autoimmunity Reviews, 20, Article ID: 102868.
https://doi.org/10.1016/j.autrev.2021.102868
[4]  Frisoli, M.L., Essien, K. and Harris, J.E. (2020) Vitiligo: Mechanisms of Pathogenesis and Treatment. Annual Review of Immunology, 38, 621-648.
https://doi.org/10.1146/annurev-immunol-100919-023531
[5]  Chen, J., Li, S. and Li, C. (2021) Mechanisms of Melanocyte Death in Vitiligo. Medicinal Research Reviews, 41, 1138-1166.
https://doi.org/10.1002/med.21754
[6]  Wang, Y., Li, S. and Li, C. (2019) Perspectives of New Advances in the Pathogenesis of Vitiligo: From Oxidative Stress to Autoimmunity. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, 1017-1023.
https://doi.org/10.12659/MSM.914898
[7]  Van Den Boorn, J.G., Konijnenberg, D., Dellemijn, T.A.M., et al. (2009) Autoimmune Destruction of Skin Melanocytes by Perilesional T Cells from Vitiligo Patients. The Journal of Investigative Dermatology, 129, 2220-2232.
https://doi.org/10.1038/jid.2009.32
[8]  Yang, L., Wei, Y., Sun, Y., et al. (2015) Interferon-Gamma Inhibits Melanogenesis and Induces Apoptosis in Melanocytes: A Pivotal Role of CD8 Cytotoxic T Lymphocytes in Vitiligo. Acta Dermato-Venereologica, 95, 664-670.
https://doi.org/10.2340/00015555-2080
[9]  Grimes, P.E., Morris, R., Avaniss-Aghajani, E., et al. (2004) Topical Tacrolimus Therapy for Vitiligo: Therapeutic Responses and Skin Messenger RNA Expression of Proinflammatory Cytokines. Journal of the American Academy of Dermatology, 51, 52-61.
https://doi.org/10.1016/j.jaad.2003.12.031
[10]  Rashighi, M., Agarwal, P., Richmond, J.M., et al. (2014) CXCL10 Is Critical for the Progression and Maintenance of Depigmentation in a Mouse Model of Vitiligo. Science Translational Medicine, 6, 223-223.
https://doi.org/10.1126/scitranslmed.3007811
[11]  Boukhedouni, N., Martins, C., Darrigade, A.S., et al. (2020) Type-1 Cytokines Regulate MMP-9 Production and E-Cadherin Disruption to Promote Melanocyte Loss in Vitiligo. JCI Insight, 5, E133772.
https://doi.org/10.1172/jci.insight.133772
[12]  Lee, E.J., Kim, J.Y., Yeo, J.H., et al. (2024) ISG15-USP18 Dysregulation by Oxidative Stress Promotes IFN-γ Secretion from CD8 T Cells in Vitiligo. The Journal of Investigative Dermatology, 144, 273-283.E11.
https://doi.org/10.1016/j.jid.2023.08.006
[13]  Liu, H., et al. (2023) The IFN-γ-CXCL9/CXCL10-CXCR3 Axis in Vitiligo: Pathological Mechanism and Treatment. European Journal of Immunology, 54, e2250281.
https://pubmed.ncbi.nlm.nih.gov/37937817/
[14]  Xie, B., Zhu, Y., Shen, Y., et al. (2023) Treatment Update for Vitiligo Based on Autoimmune Inhibition and Melanocyte Protection. Expert Opinion on Therapeutic Targets, 27, 189-206.
https://doi.org/10.1080/14728222.2023.2193329
[15]  Hamzavi, I., Rosmarin, D., Harris, J.E., et al. (2022) Efficacy of Ruxolitinib Cream in Vitiligo by Patient Characteristics and Affected Body Areas: Descriptive Subgroup Analyses from a Phase 2, Randomized, Double-Blind Trial. Journal of the American Academy of Dermatology, 86, 1398-1401.
https://doi.org/10.1016/j.jaad.2021.05.047
[16]  Craiglow, B.G. and King, B.A. (2015) Tofacitinib Citrate for the Treatment of Vitiligo: A Pathogenesis-Directed Therapy. JAMA Dermatology, 151, 1110-1112.
https://doi.org/10.1001/jamadermatol.2015.1520
[17]  Song, H., Hu, Z., Zhang, S., et al. (2022) Effectiveness and Safety of Tofacitinib Combined with Narrowband Ultraviolet B Phototherapy for Patients with Refractory Vitiligo in Real-World Clinical Practice. Dermatologic Therapy, 35, E15821.
https://doi.org/10.1111/dth.15821
[18]  Guttman-Yassky, E., Del Duca, E., Da Rosa, J.C., et al. (2024) Improvements in Immune/Melanocyte Biomarkers with JAK3/TEC Family Kinase Inhibitor Ritlecitinib in Vitiligo. The Journal of Allergy and Clinical Immunology, 153, 161-172.E8.
https://doi.org/10.1016/j.jaci.2023.09.021
[19]  Agarwal, P., Rashighi, M., Essien, K.I., et al. (2015) Simvastatin Prevents and Reverses Depigmentation in a Mouse Model of Vitiligo. The Journal of Investigative Dermatology, 135, 1080-1088.
https://doi.org/10.1038/jid.2014.529
[20]  Wu, H., Liao, W., Li, Q., et al. (2018) Pathogenic Role of Tissue-Resident Memory T Cells in Autoimmune Diseases. Autoimmunity Reviews, 17, 906-911.
https://doi.org/10.1016/j.autrev.2018.03.014
[21]  Richmond, J.M., Strassner, J.P., Rashighi, M., et al. (2019) Resident Memory and Recirculating Memory T Cells Cooperate to Maintain Disease in a Mouse Model of Vitiligo. Journal of Investigative Dermatology, 139, 769-778.
https://doi.org/10.1016/j.jid.2018.10.032
[22]  Boniface, K., Jacquemin, C., Darrigade, A.S., et al. (2018) Vitiligo Skin Is Imprinted with Resident Memory CD8 T Cells Expressing CXCR3. Journal of Investigative Dermatology, 138, 355-364.
https://doi.org/10.1016/j.jid.2017.08.038
[23]  Pan, Y., Tian, T., Park, C.O., et al. (2017) Survival of Tissue-Resident Memory T Cells Requires Exogenous Lipid Uptake and Metabolism. Nature, 543, 252-256.
https://doi.org/10.1038/nature21379
[24]  Lin, R., Zhang, H., Yuan, Y., et al. (2020) Fatty Acid Oxidation Controls CD8 Tissue-Resident Memory T-Cell Survival in Gastric Adenocarcinoma. Cancer Immunology Research, 8, 479-492.
https://doi.org/10.1158/2326-6066.CIR-19-0702
[25]  Pan, Y. and Kupper, T.S. (2018) Metabolic Reprogramming and Longevity of Tissue-Resident Memory T Cells. Frontiers in Immunology, 9, Article No. 1347.
https://doi.org/10.3389/fimmu.2018.01347
[26]  Dikiy, S. and Rudensky, A.Y. (2023) Principles of Regulatory T Cell Function. Immunity, 56, 240-255.
https://doi.org/10.1016/j.immuni.2023.01.004
[27]  Zhang, Q., Cui, T., Chang, Y., et al. (2018) HO-1 Regulates the Function of Treg: Association with the Immune Intolerance in Vitiligo. Journal of Cellular and Molecular Medicine, 22, 4335-4343.
https://doi.org/10.1111/jcmm.13723
[28]  Giri, P.S., Patel, S.S. and Dwivedi, M. (2023) Altered Regulatory T Cell-Mediated Natural Killer Cells Suppression May Lead to Generalized Vitiligo. Human Immunology, 85, Article ID: 110737.
https://doi.org/10.1016/j.humimm.2023.110737
[29]  Zhang, X., Liu, D., He, M., et al. (2021) Polymeric Nanoparticles Containing Rapamycin and Autoantigen Induce Antigen-Specific Immunological Tolerance for Preventing Vitiligo in Mice. Human Vaccines & Immunotherapeutics, 17, 1923-1929.
https://doi.org/10.1080/21645515.2021.1872342
[30]  Chen, J., Wang, X., Cui, T., et al. (2022) Th1-Like Treg in Vitiligo: An Incompetent Regulator in Immune Tolerance. Journal of Autoimmunity, 131, Article ID: 102859.
https://doi.org/10.1016/j.jaut.2022.102859
[31]  Eby, J.M., Kang, H.K., Tully, S.T., et al. (2015) CCL22 to Activate Treg Migration and Suppress Depigmentation in Vitiligo. The Journal of Investigative Dermatology, 135, 1574-1580.
https://doi.org/10.1038/jid.2015.26
[32]  Li, H., Wang, C., Li, X., et al. (2021) CCL17-CCR4 Axis Contributes to the Onset of Vitiligo in Mice. Immunity, Inflammation and Disease, 9, 702-709.
https://doi.org/10.1002/iid3.423
[33]  Essien, K.I., Katz, E.L., Strassner, J.P., et al. (2022) Regulatory T Cells Require CCR6 for Skin Migration and Local Suppression of Vitiligo. Journal of Investigative Dermatology, 142, 3158-3166.E7.
https://doi.org/10.1016/j.jid.2022.05.1090
[34]  Arjomandnejad, M., Kopec, A.L. and Keeler, A.M. (2022) CAR-T Regulatory (CAR-Treg) Cells: Engineering and Applications. Biomedicines, 10, Article No. 287.
https://doi.org/10.3390/biomedicines10020287
[35]  Sun, Y., Yuan, Y., Zhang, B., et al. (2023) CARs: A New Approach for the Treatment of Autoimmune Diseases. Science China Life Sciences, 66, 711-728.
https://doi.org/10.1007/s11427-022-2212-5
[36]  Mukhatayev, Z., Dellacecca, E.R., Cosgrove, C., et al. (2020) Antigen Specificity Enhances Disease Control by Tregs in Vitiligo. Frontiers in Immunology, 11, Article ID: 581433.
https://www.frontiersin.org/articles/10.3389/fimmu.2020.581433
https://doi.org/10.3389/fimmu.2020.581433
[37]  Sushama, S., Dixit, N., Gautam, R.K., et al. (2019) Cytokine Profile (IL-2, IL-6, IL-17, IL-22, and TNF-α) in Vitiligo-New Insight into Pathogenesis of Disease. Journal of Cosmetic Dermatology, 18, 337-341.
https://doi.org/10.1111/jocd.12517
[38]  Bernardini, N., Skroza, N., Tolino, E., et al. (2020) IL-17 and Its Role in Inflammatory, Autoimmune, and Oncological Skin Diseases: State of Art. International Journal of Dermatology, 59, 406-411.
https://doi.org/10.1111/ijd.14695
[39]  Kotobuki, Y., Tanemura, A., Yang, L., et al. (2012) Dysregulation of Melanocyte Function by Th17-Related Cytokines: Significance of Th17 Cell Infiltration in Autoimmune Vitiligo Vulgaris. Pigment Cell & Melanoma Research, 25, 219-230.
https://doi.org/10.1111/j.1755-148X.2011.00945.x
[40]  Wang, W., et al. (2019) Astilbin Reduces ROS Accumulation and VEGF Expression through Nrf2 in Psoriasis-Like Skin Disease. Biological Research, 52, Article No. 49.
https://doi.org/10.1186/s40659-019-0255-2
[41]  Speeckaert, R., Mylle, S. and Van Geel, N. (2019) IL-17A Is Not a Treatment Target in Progressive Vitiligo. Pigment Cell & Melanoma Research, 32, 842-847.
https://doi.org/10.1111/pcmr.12789
[42]  Belpaire, A., Van Geel, N. and Speeckaert, R. (2022) From IL-17 to IFN-γ in Inflammatory Skin Disorders: Is Transdifferentiation a Potential Treatment Target? Frontiers in Immunology, 13, Article ID: 932265.
https://doi.org/10.3389/fimmu.2022.932265

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133