全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Linear Functional Equations and Twisted Polynomials

DOI: 10.4236/jamp.2024.124090, PP. 1459-1471

Keywords: Functional Equations, Twisted Polynomials, Rings, Morphisms, Euclidian Division

Full-Text   Cite this paper   Add to My Lib

Abstract:

A certain variety of non-switched polynomials provides a uni-figure representation for a wide range of linear functional equations. This is properly adapted for the calculations. We reinterpret from this point of view a number of algorithms.

References

[1]  Ore, O. (1933) Theory of Non-Commutative Polynomials. Annals of Mathematics, 34, 480-508.
https://doi.org/10.2307/1968173
[2]  Hong, H. (2001) Ore Principal Subresultant Coefficients in Solutions. Applicable Algebra in Engineering, Communication and Computing, 11, 227-237.
https://doi.org/10.1007/s002000000041
[3]  Ore, O. (1931) Linear Equations in Non-Commutative Fields. Annals of Mathematics, 32, 463-477.
https://doi.org/10.2307/1968245
[4]  Bronstein, M. and Petkovšek, M. (1994) On Ore Rings, Linear Operators and Factorisation. Programmir Ovanie, 1, 27-44.
[5]  Bronstein, M. and Petkovšek, M. (1996) An Introduction to Pseudo-Linear Algebra. Theoretical Computer Science, 157, 3-33.
https://doi.org/10.1016/0304-3975(95)00173-5
[6]  Cartier, P. (1992) Démonstration “automatique” d’identités et fonctions hypergéométriques. Séminaire Bourbaki, 34, 41-91.
http://www.numdam.org/article/SB_1991-1992__34__41_0.pdf
[7]  Grigoriev, D.Yu. (1990) Complexity of Factoring and Calculating the GCD of Linear Ordinary Differential Operators. Journal of Symbolic Computation, 10, 7-37.
https://doi.org/10.1016/S0747-7171(08)80034-X
[8]  Put, M. and Singer, M.F. (2003) Galois Theory of Linear Differential Equations. Springer-Verlag, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-55750-7
[9]  Berkovich, L.M. and Tsirulik, V.G. (1986) The Differential Resultant and Some of Its Applications. Differentsialnye Uravneniya, 22, 750–757.
[10]  Hong, H. (2001) Ore Subresultant Coefficients in Solutions. Applicable Algebra in Engineering, Communication and Computing, 12, 421-428.
https://doi.org/10.1007/s002000100082
[11]  Put, M. and Singer, M.F. (1997) Galois Theory of Difference Equations. Springer-Verlag, Berlin.
[12]  Bostan, A., Chyzak, F., Cluzeau, T. and Salvy, B. (2006) Low Complexity Algorithms for Linear Recurrences. ISSAC’06: Proceedings of the 2006 International Symposium on Symbolic and Algebraic Computation, Genoa, July 2006, 31-38.
https://doi.org/10.1145/1145768.1145781
[13]  Chardin, M. (1991) Differential Resultants and Subresultants. In: Budach, L., Ed., Fundamentals of Computation Theory, Springer, Berlin, Heidelberg, 180-189.
https://doi.org/10.1007/3-540-54458-5_62
[14]  Li, Z.M. (2000) Greatest Common Right Divisors, Least Common Left Multiples, and Subresultants of Ore Polynomials. In: Gao, X.S. and Wang, D.M., Eds., Mathematics Mechanization and Applications, Academic Press, San Diego, CA, 297-324.
https://doi.org/10.1016/B978-012734760-8/50013-2
[15]  Bronstein, M. (1992) Linear Ordinary Differential Equations: Breaking through the Order 2 Barrier. ISSAC’92: International Symposium on Symbolic and Algebraic Computation, Berkeley, August 1992, 42-48.
https://doi.org/10.1145/143242.143264
[16]  Chyzak, F. and Salvy, B. (1998) Non-Commutative Elimination in Ore Algebras Proves Multivariate Holonomic Identities. Journal of Symbolic Computation, 26, 187-227.
https://doi.org/10.1006/jsco.1998.0207
[17]  Singer, M.F. (2007) Introduction to the Galois Theory of Linear Differential Equations. arXiv: 0712.4124.
https://arxiv.org/abs/0712.4124
[18]  Takayama, N. (1989) Gröbner Basis and the Problem of Contiguous Relations. Japan Journal of Applied Mathematics, 6, 147-160.
https://doi.org/10.1007/BF03167920

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133