|
溶液种类对电沉积修复混凝土裂缝效果的影响
|
Abstract:
电沉积方法是通过电场诱导水环境中离子迁移、沉积生长来实现裂缝修复,对地下结构微细渗漏裂缝修复具有良好前景。本文探究了三种不同弱酸电解质复合溶液(乙酸钙–硫酸铝、乙酸钙–乙酸镁、乙酸锌–柠檬酸钠)电沉积修复规律,比较了这几种体系的宏观修复效果,分析了它们的微观修复机理,发现乙酸钙–硫酸铝体系修复速率快,裂缝断面覆盖率高,抗渗性能提升明显,修复前后渗透系数下降近四个数量级。这为地下结构电沉积修复的溶液选择提供物理基础。
The electro deposition method achieves crack repair by inducing ion migration and deposition growth in the water environment through an electric field, and has good prospects for repairing micro leakage cracks in underground structures. This article explores the electro deposition repair laws of three different weak acid electrolyte composite solutions (calcium acetate aluminum sulfate, calcium acetate magnesium acetate, zinc acetate sodium citrate), compares the macroscopic repair effects of these systems, analyzes their microscopic repair mechanisms, and finds that the calcium acetate aluminum sulfate system has a fast repair rate, high crack section coverage, significant improvement in impermeability, and a decrease of nearly four orders of magnitude in permeability coefficient before and after repair. This provides a physical basis for the selection of solutions for the electro deposition repair of underground structures.
[1] | Altin, S., Tankut, T., Anil, O. and Demirel, Y. (2003) Response of Reinforced Concrete Beams with Clamps Applied Externally: An Experimental Study. Engineering Structures, 25, 1217-1229. https://doi.org/10.1016/S0141-0296(03)00082-8 |
[2] | Lim, Y.M. and Li, V.C. (1997) Durable Repair of Aged Infrastructures Using Trapping Mechanism of Engineered Cementitious Composites. Cement and Concrete Composites, 19, 373-385. https://doi.org/10.1016/S0958-9465(97)00026-7 |
[3] | Shash, A.A. (2005) Repair of Concrete Beams—A Case Study. Construction and Building Materials, 19, 75-79. https://doi.org/10.1016/j.conbuildmat.2004.04.024 |
[4] | Kenai, S. and Bahar, R. (2003) Evaluation and Repair of Algiers New Airport Building. Cement and Concrete Composites, 25, 633-641. https://doi.org/10.1016/S0958-9465(02)00077-X |
[5] | White, S.R., Sottos, N.R., Geubelle, P.H., et al. (2001) Autonomic Healing of Polymer Composites. Nature, 409, 794-797. https://doi.org/10.1038/35057232 |
[6] | Michelle, M.P., Richard, B., Shukla, A., et al. (2011) Selfing-Healing Concrete with a Microencapsulated Healing Agent. |
[7] | Gollapudi, U.K., Knutson, C.L., Bang, S.S., et al. (1995) A New Method for Controlling Leaching through Permeable Channels. Chemosphere, 30, 695-705. https://doi.org/10.1016/0045-6535(94)00435-W |
[8] | Shin-Ichi, I., Minoru, K. and Tomoya, N. (2009) Technical Committee on Autogenous Healing in Cementitious. Japan Concrete Institute, Tokyo. |
[9] | Otsuki, N., Hisada, M. and Ryu, J.S. (1999) Rehabilition of Concrete Cracks by Electrodeposition. Concrete International, 21, 58-63. |
[10] | Ryu, J.S. (2001) An Experimental Study on the Repair of Concrete Crack by Electrochemical Technique. Materials and Structures, 34, 433-437. https://doi.org/10.1007/BF02482290 |
[11] | Ryu, J.S. and Otsuki, N. (2002) Crack Closure of Reinforced Concrete by Electrodeposition Technique. Cement and Concrete Research, 32, 159-146. https://doi.org/10.1016/S0008-8846(01)00650-0 |
[12] | Ryu, J.S. and Otsuki, N. (2002) Application of Electrochemical Techniques for the Control of Cracks and Steel Corrosion in Concrete. Journal of Applied Electrochemistry, 32, 635-639. https://doi.org/10.1023/A:1020143229044 |
[13] | Ryu, J.S. (2003) Influence of Crack Width, Cover Depth, Water-Cement Ratio and Temperature on the Formation of Electrodeposits on the Concrete Surface. Magazine of Concrete Research, 55, 35-40. https://doi.org/10.1680/macr.2003.55.1.35 |
[14] | 金伟良, 彭文浩, 毛江鸿, 王金权, 樊玮洁, 潘崇根. 不同电流密度下混凝土裂缝电沉积产物的分布特性[J]. 土木与环境工程学报(中英文), 2019, 41(3): 127-133. |
[15] | 宋显辉, 张华, 李卓球. 碳纤维增强混凝土裂纹钝化的有限元模拟与实验研究[J]. 华中科技大学学报, 2003, 20(3): 26-29. |
[16] | 陈庆. 多相材料随机细观力学模型及其在电化学沉积修复混凝土中的应用[D]: [博士学位论文]. 上海: 同济大学, 2014. |