|
基于网络药理学研究丹参饮与补心气口服液治疗冠心病的分子机制
|
Abstract:
目的:采用网络药理学方法解析中药治疗冠心病的药理机制。方法:使用中药系统药理学分析平台(TCMSP),检索丹参、檀香、砂仁、黄芪、人参、石菖蒲、薤白7味中药的有效成分和作用靶点。使用DDrugBank、TTD、In-Cardiome三个数据库中收集冠心病相关靶点。利用Cytoscape软件构建丹参、补心气口服液–冠心病靶点网络和靶点–通路网络。通过DAVID数据库进行生物功能和信号通路富集分析,预测丹参饮治疗冠心病的作用机制。结果:通过数据库筛选出得到丹参饮和补心气口服液作用的冠心病靶点,分别为68、97个,信号通路各10条,并利用分子对接技术筛选出前九个补心气口服液和丹参饮的成分与冠心病靶点对接的结合能排名。结论:丹参饮与补心气口服液可能通过多靶点、多信号通路协同治疗冠心病。
Objective: This paper aims to analyze the pharmacological mechanism of traditional Chinese medicine (TCM) in the treatment of coronary heart disease (CHD). Method: By using the TCM Systematic pharmacological analysis platform (TCMSP), this paper searches the effective components and targets of salvia miltiorrhiza, sandalwood, amomum, Astragalus, ginseng, Calamus, Allium Macrostemon 7. Three databases, DDrugBank, TTD and In-Cardiome, were used to collect CHD related targets. The target network and target pathway network of Salvia miltiorrhiza, and Buxinqi oral liquid were constructed by Cytoscape software. The biological function and signal pathway enrichment analysis were conducted through DAVID database to predict the mechanism of action of Danshen Decoction in the treatment of coronary heart disease. Results: 68 and 97 CHD targets of Danshen Decoction and Buxinqi oral liquid were selected through the database, and 10 signal pathways were obtained, and the binding energy ranking of the first nine Buxinqi oral liquid and Danshen decoction with CHD target was selected by molecular docking technology. Conclusion: Danshen Decoction and Buxinqi oral liquid may treat coronary heart disease through multi-target and multi-signal pathway synergism.
[1] | 孟岩, 吴威, 王诗瑶, 等. 中药治疗冠心病相关信号通路的研究进展[J/OL]. 辽宁中医药大学学报: 1-19. http://kns.cnki.net/kcms/detail/21.1543.r.20230203.1437.015.html, 2023-02-15. |
[2] | 《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告2020》要点解读[J]. 中国心血管杂志, 2021, 26(3): 209-218. |
[3] | 吴迪, 张庆军. 中国冠心病诊疗现状和进展[J]. 中国研究型医院, 2020, 7(1): 71-75, 192-197. https://doi.org/10.19450/j.cnki.jcrh.2020.01.015 |
[4] | 郑筱萸. 中药新药临床研究指导原则[M]. 北京: 中国医药科技出版社, 2005: 69. |
[5] | 姚运秀, 潘春晖, 王晨, 等. 网络药理学在中药复方的研究进展与应用策略[J]. 成都大学学报(自然科学版), 2020, 39(3): 257-263. |
[6] | Hou, J., Wang, J., Lin, C., Fu, J., Ren, J., Li, L., Guo, H., Han, X. and Liu, J. (2014) Circulating MicroRNA Profiles Differ between Qi-Stagnation and Qi-Deficiency in Coronary Heart Disease Patients with Blood Stasis Syndrome. Evidence-Based Complementary and Alternative Medicine, 2014, Article ID: 926962. https://doi.org/10.1155/2014/926962 |
[7] | Balakrishnan, I., Yang, X., Brown, J., Ramakrishnan, A., Torok-Storb, B., Kabos, P., Hesselberth, J.R. and Pillai, M.M. (2014) Genome-Wide Analysis of miRNA-mRNA Interactions in Marrow Stromal Cells. Stem Cells, 32, 662-673. https://doi.org/10.1002/stem.1531 |
[8] | Chen, T., Zhang, X., Zhu, G., Liu, H., Chen, J., Wang, Y. and He, X., (2020) Quercetin Inhibits TNF-α Induced HUVECs Apoptosis and Inflammation via Downregulating NF-kB and AP-1 Signaling Pathway in Vitro. Medicine, 99, e22241. https://doi.org/10.1097/MD.0000000000022241 |
[9] | 王紫艳, 李磊, 刘建勋, 等. 血瘀证血小板改变及中医药作用研究进展[J]. 中国中药杂志, 2021, 46(20): 5201-5209. |
[10] | Giambastiani, B.M.S. (2007) Evoluzione Idrologica ed Idrogeologica della Pineta di San Vitale (Ravenna). Ph.D. Thesis, Bologna University, Bologna. |
[11] | 李水芹, 王飞, 李平, 赵和平, 张文生, 王永炎. 缺血性中风病血瘀证蛋白质组学初步研究[J]. 中华中医药杂志, 2014, 29(12): 3977-3980. |
[12] | Xin, Q.Q., Chen, X., Yuan, R., Yuan, Y.H., Hui, J.Q., Miao, Y., Cong, W.H. and Chen, K.J. (2021) Correlation of Platelet and Coagulation Function with Blood Stasis Syndrome in Coronary Heart Disease: A Systematic Review and Meta-Analysis. Chinese Journal of Integrative Medicine, 27, 858-866. https://doi.org/10.1007/s11655-021-2871-2 |
[13] | 王阶, 姚魁武. 血瘀证诊断标准研究述要及思考[J]. 中国中医药信息杂志, 2004, 11(1): 17-19. |
[14] | Zhang, H., Li, D., Li, Z. and Song, Y. (2016) Effect of Ligustrazine on Rat Peritoneal Mesothelial Cells Treated with Lipopolysaccharide. Renal Failure, 38, 961-969. https://doi.org/10.3109/0886022X.2016.1165053 |
[15] | Chen, J., Wang, D., Wang, F., Shi, S., Chen, Y., Yang, B., Tang, Y. and Huang, C., (2017) Exendin-4 Inhibits Structural Remodeling and Improves Ca2 Homeostasis in Rats with Heart Failure via the GLP-1 Receptor through the eNOS/cGMP/PKG Pathway. Peptides, 90, 69-77. https://doi.org/10.1016/j.peptides.2017.02.008 |
[16] | Liu, C., Chen, G., Chen, Y., et al. (2021) Danlou Tablets Inhibit Atherosclerosis in Apolipoprotein E-Deficient Mice by Inducing Macrophage Autophagy: The Role of the PI3K-Akt-mTOR Pathway. Frontiers in Pharmacology, 12, Article 724670. https://doi.org/10.3389/fphar.2021.724670 |
[17] | Lopes-Pires, M.E., Naime, A.C., Almeida Cardelli, N.J., Anjos, D.J., Antunes, E. and Marcondes, S. (2015) PKC and AKT Modulate cGMP/PKG Signaling Pathway on Platelet Aggregation in Experimental Sepsis. PLOS ONE, 10, e0137901. https://doi.org/10.1371/journal.pone.0137901 |
[18] | Moore, S.F., Agbani, E.O., Wersall, A., Poole, A.W., Williams, C.M., Zhao, X., Li, Y., Hutchinson, J.L., Hunter, R.W. and Hers, I. (2021) Opposing Roles of GSK3α and GSK3β Phosphorylation in Platelet Function and Thrombosis. International Journal of Molecular Sciences, 22, Article 10656. https://doi.org/10.3390/ijms221910656 |
[19] | Toth-Zsamboki, E., Oury, C., Cornelissen, H., DeVos, R., Vermylen, J. and Hoylaerts, M.F. (2003) P2X1-Mediated ERK2 Activation Amplifies the Collagen-Induced Platelet Secretion by Enhancing Myosin Light Chain Kinase Activation. Journal of Biological Chemistry, 278, 46661-46667. https://doi.org/10.1074/jbc.M308452200 |
[20] | Lutgens, E., Atzler, D., Doring, Y., Duchene, J., Steffens, S. and Weber, C. (2019) Immunotherapy for Cardiovascular Disease. European Heart Journal, 40, 3937-3946. https://doi.org/10.1093/eurheartj/ehz283 |
[21] | Yang, J., Tian, S., Zhao, J. and Zhang, W. (2020) Exploring the Mechanism of TCM Formulae in the Treatment of Different Types of Coronary Heart Disease by Network Pharmacology and Machining Learning. Pharmacological Research, 159, Article ID: 105034. https://doi.org/10.1016/j.phrs.2020.105034 |