|
乌饭树再生及遗传转化体系的建立
|
Abstract:
本研究以乌饭树叶片为材料,筛选诱导叶片再生不定芽的植物生长调节剂种类和浓度,建立了乌饭树再生体系。此外,确定了用于筛选转基因材料的抗生素浓度、侵染乌饭树叶片的根癌农杆菌菌液浓度和侵染时间,建立了乌饭树遗传转化体系。结果表明:(1) 乌饭树叶片不定芽再生的最佳培养基配方为:WPM 0.5 mg/L TDZ 4 mg/L ZT;(2) 乌饭树叶片预培养5 d,筛选用抗生素潮霉素浓度为5 mg/L,农杆菌抑制剂头孢霉素浓度为350 mg/L,共培养6 d,农杆菌浓度为0.8,侵染时间为60 min时,遗传转化效率最高。上述结果为在乌饭树中进行基因功能验证和分子育种提供了理论基础和技术支撑。
In this study, leaves of Vaccinium bracteatum Thunb were used as materials to screen the types and concentrations of plant growth regulators inducing adventitious bud regeneration, thus establishing the regeneration system of Vaccinium bracteatum Thunb. Additionally, optimal concentrations of antibiotics for screening transgenic materials, as well as concentrations and duration of Agrobacterium tumefaciens infection on Vaccinium bracteatum Thunb leaves, were determined to establish a genetic transformation system. The results revealed that: (1) the formula of adventitious bud regeneration medium of Vaccinium bracteatum Thunb leaves was 0.5 mg/L TDZ 4 mg/L ZT; (2) the pre-culture time of Vaccinium bracteatum Thunb leaves was 5 days, the optimal concentration of the antibiotic hygromycin for screening was 5 mg/L, the optimal concentration of the Agrobacterium inhibitor cephalosporin was 350 mg/L, the co-culture time was 6 days, the concentration of Agrobacterium was 0.8, and the infection time was 60 minutes, at which the infection efficiency was the highest. These findings provide a theoretical basis and technical support for gene function verification and molecular breeding in Vaccinium bracteatum Thunb.
[1] | 章嘉磊. 乌饭树设施栽培、产品加工工艺及乌米饭保健机理研究[D]: [硕士学位论文]. 杭州: 浙江理工大学, 2017. |
[2] | 谭小丹, 陈涵, 王淑娜, 等. 乌饭树的营养价值及其开发利用[J]. 农产品加工(下半月), 2016(4): 59-62. |
[3] | 谢远程. 乌饭树(Vaccinim bracteatum)生态学特性及其无性繁殖技术研究[D]: [硕士学位论文]. 南京: 南京林业大学, 2005. |
[4] | Su, W., Xu, M., Radani, Y., et al. (2023) Technological Development and Application of Plant Genetic Transformation. International Journal of Molecular Sciences, 24, Article No. 10646. https://doi.org/10.3390/ijms241310646 |
[5] | Levengood, H., Dou, Y., Fan, J., et al. (2023) Agrobacterium tumefaciens-Mediated Genetic Transformation of Narrowleaf Plantain. Journal of Visualized Experiments. https://doi.org/10.3791/64777 |
[6] | Sutradhar, M. and Mandal, N. (2023) Reasons and Riddance of Agrobacterium tumefaciens Overgrowth in Plant Transformation. Transgenic Research, 32, 33-52. https://doi.org/10.1007/s11248-023-00338-w |
[7] | Choudhury, A. and Rajam, M.V. (2021) Genetic Transformation of Legumes: An Update. Plant Cell Reports, 40, 1813-1830. https://doi.org/10.1007/s00299-021-02749-7 |
[8] | Budeguer, F., Enrique, R., Perera, M.F., et al. (2021) Genetic Transformation of Sugarcane, Current Status and Future Prospects. Frontiers in Plant Science, 12, Article ID: 768609. https://doi.org/10.3389/fpls.2021.768609 |
[9] | Ge, X., Xu, J., Yang, Z., et al. (2023) Efficient Genotype-Independent Cotton Genetic Transformation and Genome Editing. Journal of Integrative Plant Biology, 65, 907-917. https://doi.org/10.1111/jipb.13427 |
[10] | Song, G.Q. and Gao, X. (2017) Transcriptomic Changes Reveal Gene Networks Responding to the Overexpression of a Blueberry DWARF AND DELAYED FLOWERING 1 Gene in Transgenic Blueberry Plants. BMC Plant Biology, 17, Article No. 106. https://doi.org/10.1186/s12870-017-1053-z |
[11] | Omori, M., Yamane, H., Osakabe, K., et al. (2020) Targeted Mutagenesis of CENTRORADIALIS Using CRISPR/Cas9 System through the Improvement of Genetic Transformation Efficiency of Tetraploid Highbush Blueberry. The Journal of Horticultural Science and Biotechnology, 96, 153-161. https://doi.org/10.1080/14620316.2020.1822760 |
[12] | Fan, M., Li, T., Li, Y., et al. (2021) Vaccinium bracteatum Thunb. as a Promising Resource of Bioactive Compounds with Health Benefits: An Updated Review. Food Chemistry, 356, Article ID: 129738. https://doi.org/10.1016/j.foodchem.2021.129738 |
[13] | Zhang, Y.-L., Lin-Wang, K., Albert, N.W., et al. (2021) Identification of a Strong Anthocyanin Activator, VbMYBA, from Berries of Vaccinium bracteatum Thunb. Frontiers in Plant Science, 12, Article ID: 697212. https://doi.org/10.3389/fpls.2021.697212 |
[14] | 刘雅兰, 张婷渟, 杨倩倩, 等. 野生乌饭树叶片愈伤组织的诱导及增殖[J]. 安徽农学通报, 2023, 29(20): 83-87. |
[15] | 蔡升, 续晨, 宰学明, 等. 乌饭树组织培养技术[J]. 北方园艺, 2021(5): 114-118. |
[16] | 刘炎, 刘克俭, 王江, 等. 农杆菌介导的针叶树种遗传转化研究进展[J]. 黑龙江农业科学, 2021(4): 136-141. |
[17] | 张曼, 徐锦华, 刘广, 等. 西瓜'SM1'高效遗传转化体系的构建[J]. 分子植物育种, 2021, 19(2): 498-503. |
[18] | Yu, H., Lin, T., Meng, X., et al. (2021) A Route to de Novo Domestication of Wild Allotetraploid Rice. Cell, 184, 1156-1170e14. https://doi.org/10.1016/j.cell.2021.01.013 |
[19] | 乌日罕, 代金玲, 白向东, 等. 河北杨叶片诱导不定芽再生体系的建立[J]. 内蒙古农业大学学报(自然科学版), 2021, 42(4): 34-38. |
[20] | 权志珣, 燕丽萍, 王因花, 等. 元宝枫组织培养与快速繁殖技术[J]. 中南林业科技大学学报, 2024, 44(1): 119-127, 139. |
[21] | 王欢, 郭俊杰, 王春胜, 等. 西南桦节间茎段植株再生体系的建立[J]. 林业科学研究, 2023, 36(6): 115-125. |
[22] | 陈桂芝, 腊贵晓, 郭军旗, 等. “唐半夏”无菌繁殖体系建立[J]. 北方园艺, 2024(1): 113-120. |
[23] | 张晓琳, 纵丹, 李嘉其, 等. 滇杨组织培养再生及遗传转化体系建立[J]. 浙江农林大学学报, 2024, 41(2): 314-321. |
[24] | 黄赛, 高凯, 苗得雨, 等, 毛白杨GM107再生体系和遗传转化体系的建立[J]. 分子植物育种, 2022: 1-22. |
[25] | 杨敏, 周陈平, 李庆萌, 等. 番木瓜胚性细胞悬浮系高效遗传转化体系的建立[J]. 果树学报, 2023, 40(10): 2089-2097. |
[26] | 马涛, 陈芳, 王跃华, 等. 不同抗生素对卷叶贝母鳞片叶诱导生长的影响[J]. 安徽农业科学, 2021, 49(10): 161-163. |
[27] | 刘源, 李际红, 秦光华, 等. 柳树离体再生及遗传转化体系研究进展[J]. 中国农学通报, 2023, 39(29): 32-38. |
[28] | 何旭, 高源, 张群野, 等. 白城小黑杨遗传转化体系建立及其应用[J]. 植物研究, 2023, 43(5): 667-678. |
[29] | 刘倩, 符潮, 胡珊, 等, 松属植物再生体系和遗传转化的研究现状及展望[J]. 分子植物育种, 2023: 1-10. |
[30] | 李猷, 尹蕾, 唐凯悦, 等. 外植体预培养时间对番茄外源基因转化的影响[J]. 湖北农业科学, 2014, 53(17): 4208-4210. |
[31] | 王栋鑫, 彭棣, 张爽. 农杆菌介导木本植物遗传转化的研究进展[J]. 北方园艺, 2018(2): 181-185. |