|
Al的添加对AlxCoCrFeNi高熵合金结晶过程的影响
|
Abstract:
本文采用分子动力学方法对AlxCoCrFeNi高熵合金中不同Al含量(x = 0、5、10、15、20、25、30)的模型的凝固过程进行模拟实验。结果表明,Al含量的增加会使AlxCoCrFeNi高熵合金的结晶度和结晶度降低,并且当Al的含量在不同区间时,会使AlxCoCrFeNi高熵合金发生结晶时出现的晶粒结构不一样:在Al含量较低时形成FCC单相晶粒,在含量中等时形成FCC BCC双相结构,在Al含量较高时会形成非晶结构。
In this paper, the crystallization process of AlxCoCrFeNi high-entropy alloys modeled with different Al contents (x = 0, 5, 10, 15, 20, 25, and 30) is simulated using molecular dynamics method. The results show that the increase of Al content decreases the crystallinity and crystallinity of AlxCoCrFeNi high-entropy alloys, and when the content of Al is in different intervals, it will make the grain structure appearing in AlxCoCrFeNi high-entropy alloys when crystallization occurs is not the same: FCC single-phase grains are formed when the content of Al is low, the FCC BCC dual-phase structure is formed when the content is medium, and in the case of Al at higher Al content, amorphous structure is formed.
[1] | Yeh, J.W., Chen, S.K., Lin, S.J., et al. (2004) Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6, 299-303. https://doi.org/10.1002/adem.200300567 |
[2] | Cantor, B., Chang, I.T.H., Knight, P., et al. (2004) Microstructural Development in Equiatomic Multicomponent Alloys. Materials Science and Engineering: A, 375-377, 213-218. https://doi.org/10.1016/j.msea.2003.10.257 |
[3] | Miracle, D.B. and Senkov, O.N. (2017) A Critical Review of High Entropy Alloys and Related Concepts. Acta Materialia, 122, 448-511. https://doi.org/10.1016/j.actamat.2016.08.081 |
[4] | Zhang, Y., Zuo, T.T., Tang, Z., et al. (2014) Microstructures and Properties of High-Entropy Alloys. Progress in Materials Science, 61, 1-93. https://doi.org/10.1016/j.pmatsci.2013.10.001 |
[5] | Chen, J., Zhou, X.Y., Wang, W., et al. (2018) A Review on Fundamental of High Entropy Alloys with Promising High-Temperature Properties. Journal of Alloys and Compounds, 760, 15-30. https://doi.org/10.1016/j.jallcom.2018.05.067 |
[6] | George, E.P., Raabe, D. and Ritchie, R.O. (2019) High-Entropy Alloys. Nature Reviews Materials, 4, 515-534. https://doi.org/10.1038/s41578-019-0121-4 |
[7] | Sathiyamoorthi, P. and Kim, H.S. (2022) High-Entropy Alloys with Heterogeneous Microstructure: Processing and Mechanical Properties. Progress in Materials Science, 123, 100709. https://doi.org/10.1016/j.pmatsci.2020.100709 |
[8] | Li, W.D., Xie, D., Li, D.Y., et al. (2021) Mechanical Behavior of High-Entropy Alloys. Progress in Materials Science, 118, 100777. https://doi.org/10.1016/j.pmatsci.2021.100777 |
[9] | 郑辉庭. CoCrFeNi系高熵合金定向凝固组织演变及力学性能[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2020. |
[10] | Sharma, A., Deshmukh, S.A., Liaw, P.K., et al. (2017) Crystallization Kinetics in AlxCrCoFeNi (0 ≤ x ≤ 40) High-Entropy Alloys. Scripta Materialia, 141, 54-57. https://doi.org/10.1016/j.scriptamat.2017.07.024 |
[11] | Yang, T.F., Xia, S.Q., Liu, S., et al. (2015) Effects of AL Addition on Microstructure and Mechanical Properties of AlxCrCoFeNi High-Entropy Alloy. Materials Science and Engineering: A, 648, 15-22. https://doi.org/10.1016/j.msea.2015.09.034 |
[12] | He, J.Y., Liu, W.H., Wang, H., et al. (2014) Effects of Al Addition on Structural Evolution and Tensile Properties of the FeCoNiCrMn High-Entropy Alloy System. Acta Materialia, 62, 105-113. https://doi.org/10.1016/j.actamat.2013.09.037 |
[13] | Wang, W-R., Wang, W-L., Wang, S-C., et al. (2012) Effects of Al Addition on the Microstructure and Mechanical Property of AlxCoCrFeNi High-Entropy Alloys. Intermetallics, 26, 44-51. https://doi.org/10.1016/j.intermet.2012.03.005 |
[14] | Zhang, K. and Fu, Z. (2012) Effects of Annealing Treatment on Phase Composition and Microstructure of CoCrFeNiTiAlx High-Entropy Alloys. Intermetallics, 22, 24-32. https://doi.org/10.1016/j.intermet.2011.10.010 |
[15] | Li, C., Li, J.C., Zhao, M., et al. (2010) Effect of Aluminum Contents on Microstructure and Properties of AlxCoCrFeNi Alloys. Journal of Alloys and Compounds, 504, S515-S518. https://doi.org/10.1016/j.jallcom.2010.03.111 |
[16] | Ma, L.L., Li, C., Jiang, Y.L., et al. (2017) Cooling Rate-Dependent Microstructure and Mechanical Properties of AlxSi0.2CrFeCoNiCu1-x High Entropy Alloys. Journal of Alloys and Compounds, 694, 61-67. https://doi.org/10.1016/j.jallcom.2016.09.213 |
[17] | Li, J.S., Jia, W.J., Wang, J., et al. (2016) Enhanced Mechanical Properties of a CoCrFeNi High Entropy Alloy by Supercooling Method. Materials & Design, 95, 183-187. https://doi.org/10.1016/j.matdes.2016.01.112 |
[18] | Vida, A., Maksa, Z., Molnar, D., et al. (2018) Evolution of the Phase Structure after Different Heat Treatments in NiCoFeCrGa High Entropy Alloy. Journal of Alloys and Compounds, 743, 234-239. https://doi.org/10.1016/j.jallcom.2018.01.407 |
[19] | Liu, G., Liu, L., Liu, X.W., et al. (2018) Microstructure and Mechanical Properties of Al0.7CoCrFeNi High-Entropy-Alloy Prepared by Directional Solidification. Intermetallics, 93, 93-100. https://doi.org/10.1016/j.intermet.2017.11.019 |