|
基于BH-YOLOX算法的电动车头盔检测系统研究
|
Abstract:
为了提升电动车头盔检测系统的精确度和实时性,考虑到传统检测方法在特征提取方面存在困难,目前基于深度学习的目标检测算法存在模型的泛化性不高,对复杂背景的适应性不足等问题。本文提出基于YOLOX算法优化后的BH-YOLOX模型。首先,特征提取网络维度,通过构建轻量级的Ghostnet网络,在减少了参数量和计算量的前提下,同时提高了特征提取能力,使模型更加轻量化;特征融合维度,增加了Squeeze-and-Excitation Networks (SENet)通道注意力机制,加强了不同通道的特征的关联,提高了网络在复杂场景中的性能;扩展特征层维度,BH-YOLOX在原有的三个特征层的基础上又增加了一个更大的特征层,能够有效提升网络对小目标的检测性能;最后优化损失函数,提高网络模型的回归精度。实验结果证实,BH-YOLOX模型的mAPz值达到98.90%,检测速度为104.51 FPS,能满足绝大多数交通场景的要求,也适用于部署在如摄像头等边缘设备上。
In order to improve the accuracy and real-time performance of the helmet detection system for electric vehicles, considering the difficulties in feature extraction, the current target detection algorithms based on deep learning have some problems, such as low generalization of the model and insufficient adaptability to complex background In this paper, the optimized BH-YOLOX model based on YOLOX algorithm is proposed. First of all, the feature extraction network dimension, through the construction of a lightweight Ghostnet network, in the premise of reducing the number of parameters and calculations, while improving the feature extraction capability, makes the model more lightweight. For the feature fusion dimension, the channel attention mechanism of Squeeze-and-Excitation Networks (SENet) is added, which strengthens the correlation between the features of different channels and improves the performance of the network in complex scenarios. By expanding the dimension of the feature layer, BH-YOLOX adds a larger feature layer on the basis of the original three feature layers, which can effectively improve the detection performance of the network on small targets. Finally, the loss function is optimized to improve the regression accuracy of the network model. The experimental results confirm that the mAPz value of the BH-YOLOX model reaches 98.90% and the detection speed is 104.51 FPS, which can meet the requirements of most traffic scenes and is also suitable for deployment on edge devices such as cameras.
[1] | 张鼎圣, 钟武, 彭琪琦, 等. 安全头盔对电动车驾驶员道路交通伤害的影响[J]. 四川医学, 2023, 44(10): 1041-1044. |
[2] | Jackisch, J., Sethi, D., Mitis, F., Tomasz, S. and Arra, I. (2015) 76 European Facts and the Global Status Report on Road Safety 2015. Injury Prevention, 22, A29. https://doi.org/10.1136/injuryprev-2016-042156.76 |
[3] | 马斌, 张亚. 针对电动车头盔佩戴的YOLOv5s改进算法研究[J]. 无线互联科技, 2023, 20(15): 90-93. |
[4] | 李颖. “一盔一带”严格执行电动车头盔成热购[J]. 中国质量万里行, 2020(6): 94-95. |
[5] | e Silva, R.R.V., Aires, K.R.T. and Veras, R.M.S. (2018) Detection of Helmets on Motorcyclists. Multimedia Tools and Applications, 77, 5659-5683. https://doi.org/10.1007/s11042-017-4482-7 |
[6] | 王新, 冯艺楠. 基于改进SSD的骑行人员佩戴头盔检测[J]. 电子测量技术, 2022, 45(21): 90-97. |
[7] | Rubaiyat, A.H.M., Toma, T.T., Khandani, M.K. and Pan, C.S. (2016) Automatic Detection of Helmet Uses for Construction Safety. 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW), Omaha, 13-16 October 2016, 135-142. https://doi.org/10.1109/WIW.2016.045 |
[8] | 刘晓慧, 叶西宁. 肤色检测和Hu矩在安全帽识别中的应用[J]. 华东理工大学学报(自然科学版), 2014, 40(3): 365-370. |
[9] | 李骏峰, 杨小军, 张凯望. 基于YOLOX-L算法的安全帽佩戴检测方法[J]. 计算机技术与发展, 2022, 32(9): 100-106. |
[10] | Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2014) Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 23-28 June 2014, 580-587. https://doi.org/10.1109/CVPR.2014.81 |
[11] | Joseph, R., Santosh, K.D., Ross, B.G. and Ali, F. (2016) 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 779-788. https://doi.org/10.1109/CVPR.2016.91 |
[12] | Joseph, R. and Ali, F. (2017) YOLO9000: Better, Faster, Stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 6517-6525. https://doi.org/10.1109/CVPR.2017.690 |
[13] | Redmon, J. and Farhadi, A. (2018) YoLOv3: An Incremental Improvement. arXiv: 1804.02767. https://doi.org/10.48550/arXiv.1804.02767 |
[14] | Mahto, P., Garg, P., Seth, P., et al. (2020) Refining Yolov4 for Vehicle Detection. International Journal of Advanced Research in Engineering and Technology, 11, 409-419. |
[15] | Berg, A.C., Fu, C.Y., Szegedy, C., Anguelov, D., Erhan, D., Reed, S., et al. (2015) SSD: Single Shot MultiBox Detector. Computer Vision-ECCV 2016, Amsterdam, 11-14 October 2016, 21-37. |
[16] | 薛瑞晨, 郝媛媛, 张振, 等. 基于改进YOLOv3的头盔佩戴检测算法[J]. 电子测量技术, 2021, 44(12): 115-120. |
[17] | 庄建军, 叶振兴. 基于改进YOLOv5m的电动车骑行者头盔与车牌检测方法[J]. 南京信息工程大学学报, 2024, 16(1): 1-10. |
[18] | Ge, Z., Liu, S., Wang, F., Li, Z. and Sun, J. (2021) Yolox: Exceeding YOLO Series in 2021. arXiv: 2107.08430. https://doi.org/10.48550/arXiv.2107.08430 |
[19] | Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C. and Xu, C. (2020) GhostNet: More Features from Cheap Operations. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 13-19 June 2020, 1577-1586. https://doi.org/10.1109/CVPR42600.2020.00165 |
[20] | Hu, J., Shen, L. and Sun, G. (2018) Squeeze-and-Excitation Networks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 18-23 June 2018, 7132-7141. https://doi.org/10.1109/CVPR.2018.00745 |