全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

生物滤波器的等效电路模型
Equivalent Circuit Model of Biofilter

DOI: 10.12677/met.2024.132022, PP. 179-186

Keywords: 羽毛结构耦合,等效电路模型,微基本单元,低频率,生物滤波器
Feather Structure Coupling
, Equivalent Circuit Model, Micro-Basic Unit, Low Frequency, Biological Filter

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文通过研究鸟类羽毛的耦合结构,构建并推导出:鸟类活体羽毛的“n字型”微观耦合结构与电子电路之间的耦合电路的一种新型等效电路模型。该等效电路模型是由无数个相邻羽枝(等效电感L)与羽小枝(等效电容C)组成的“n”字型结构,等效为无数个LC并联回路,构建出了由羽枝与羽小枝组成滤波器的微基本单元,使其具有生物微型滤波器功能。这些研究成果为研发低频率生物滤波器(截止频率f = 1 Hz, 100 Hz, 1 kHz)提供了理论依据,弥补了低频生物滤波器的研究领域空白。
This paper constructs an equivalent circuit model of feathers by studying the coupling structure of bird feathers. A new equivalent circuit model of the coupling circuit between the “n” shaped micro-coupling structure of bird feathers and the electronic circuit is constructed and derived. The equivalent circuit model is an “n” shaped structure composed of an infinite number of adjacent pinnacles (equivalent inductance L) and pinnacles (equivalent capacitance C), which is equivalent to an infinite number of LC parallel circuits. The micro basic unit of the filter composed of pinnacles and pinnacles is constructed, so that it has the function of biological micro filter. These research results provide a theoretical basis for the research and development of low-frequency biological filters (cutoff frequency f = 1 Hz, 100 Hz, 1 kHz), filling the gap in the research field of low-frequency biological filters.

References

[1]  赵玉平, 宋宏伟, 李京虎, 等. 一种生物滤波器的设计[J]. 上海电气技术, 2020, 13(3): 6-8, 24.
[2]  Thomas, B., Hermann, W., et al. (2012) Inner Vane Fringes of Barn Owl Feathers Reconsidered: Morphometric Data and Functional Aspects. Journal of Anatomy, 221, 1-8.
https://doi.org/10.1111/j.1469-7580.2012.01504.x
[3]  Ennos, A.R., John, R.E.H., et al. (1995) Functional Morphology of the Vanes of the Flight Feathers of the Pigeon Columba Livia. The Journal of Experimental Biology, 198, 1219-1228.
https://doi.org/10.1242/jeb.198.5.1219
[4]  任露泉, 梁云虹. 生物耦合功能特性及其实现模式[J]. 中国科学(技术科学), 2010, 40(3): 223-230.
[5]  孙少明, 任露泉, 徐成宇. 长耳鸮皮肤和覆羽耦合吸声降噪特性研究[J]. 噪声与振动控制, 2008, 28(3): 119-123.
[6]  Wu, H.Y., Xu, Z.W., Liu, M.H., et al. (1996) Research Report on the Preparation of Acid-Hydrolyzed Feather Protein and Trace Elements (Laboratory Preparation). Feed Industry, 17, 24-25.
[7]  Lee, J.H., Oh, J.W., Nam, S.H., et al. (2016) Synthesis, Optical Properties, and Multiplexed Raman Bio-Imaging of Surface Roughness-Controlled Nanobridged Nanogap Particles. Small, 12, 4726-4734.
https://doi.org/10.1002/smll.201600289
[8]  da Silva Santos, C.H., et al. (2009) Bio-Inspired Algorithms and 2D Finite Element Method Applied to Electromagnetic Band Gap Structures Design. European Conference on Antennas & Propagation, Berlin, 23-27 March 2009, 136-140.
[9]  Rosch, P.J. (2009) Bioelectromagnetic and Subtle Energy Medicine: The Interface between Mind and Matter. Annals of the New York Academy of Sciences, 1172, 297-311.
https://doi.org/10.1111/j.1749-6632.2009.04535.x
[10]  Williams, R.L. (1996) Time-Sequenced Adaptive Filtering Using a Modified P-Vector Algorithm. Proceedings of SPIEThe International Society for Optical Engineering, 2846.
https://doi.org/10.1117/12.255428
[11]  Seboka, C. (2014) Research on the Theory and Application of Metamaterials in the Field of Microwave and Optical Frequency. Master’s Thesis, Huazhong Normal University, Huazhong.
[12]  Luan, F., Choi, J.H., Lee, C., et al. (2012) Comparison and Improvement of Inverse Techniques for MEG Source Connectivity Network Reconstruction. IEEE Transactions on Magnetics, 48, 343-346.
https://doi.org/10.1109/TMAG.2011.2172399
[13]  Sekihara, K. and Nagarajan, S.S. (2008) Statistical Evaluation of the Spatial Filter Output. Springer, Berlin.
[14]  Arai, H. (2015) Free Access Transmission Line for Body Centric Communication (Invited). 2015 IEEE MTT-S 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), Taipei, 21-23 September 2015, 136-137.
https://doi.org/10.1109/IMWS-BIO.2015.7303816
[15]  Tian, L. (2014) Plasmonic Paper as a Novel Chem/Bio Detection Platform. Dissertations & Theses-Gradworks, 1-163.
[16]  Lyu, H.J., Bae, Y.S., Nair, V.V., et al. (2014) High Inductance Coil Embedded on On-Chip Magnetic Sensor for Biomagnetism Measurements. 2014 IEEE Sensors Applications Symposium, Queenstown, 18-20 February 2014, 79-82.
https://doi.org/10.1109/SAS.2014.6798921
[17]  Vázquez, L.A., Sosa, M., Córdova, T., et al. (2006) Measurements of Gastric Emptying by Biomagnetic Techniques. MEDICAL PHYSICS: Ninth Mexican Symposium on Medical Physics, Guadalajara, 18-21 March 2006, 138-141.
https://doi.org/10.1063/1.2356427
[18]  Nikolaenko, N.N., Rybina, L.A. and Serov, I.N. (2002) Behavioral and Brain Activity Changes in Users of Optical Filters with Fractal Matrix Topology. Doklady Biological Sciences, 383, 84-85.
https://doi.org/10.1023/A:1015361017698
[19]  Babij, T.M., Heimer, M.L. and Costa, P. (1988) EMI Control for VLSI Biosensor Circuitry. International Conference of the IEEE Engineering in Medicine & Biology Society, New Orleans, 4-7 November 1988, 872-873.
https://doi.org/10.1109/IEMBS.1988.95205
[20]  Hamid, L., Sarabi, M., et al. (2015) The Performance of the Spatiotemporal Kalman Filter and LORETA in Seizure Onset Localization. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, 25-29 August 2015, 2741-2744.
https://doi.org/10.1109/EMBC.2015.7318959
[21]  Jennifer, L.P., Malcolm, B.J. and Drobik, J. (2013) Design Elements of a Bio-Inspired Micro Air Vehicle. IFAC Proceedings Volumes, 46, 235-241.
https://doi.org/10.3182/20130626-3-AU-2035.00041
[22]  Jovani, R., Serrano, D., Frías, O., et al. (2006) Shift in Feather Mite Distribution during the Molt of Passerines: The Case of Barn Swallows (Hirundo rustica). Canadian Journal of Zoology, 84, 729-735.
https://doi.org/10.1139/z06-042
[23]  Prum, R.O. and Williamson, S. (2001) Theory of the Growth and Evolution of Feather Shape. Journal of Experimental Zoology, 291, 30-57.
https://doi.org/10.1002/jez.4
[24]  郑莉. 心血管系统的电路建模及电磁生物效应研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133