|
组织型纤溶酶原激活物在脓毒症相关疾病中的应用及其靶向给药的研究进展
|
Abstract:
脓毒症是由于感染引起的机体反应失调,进而导致的严重的器官功能障碍,据估计每年可造成全球约500万人死亡。它是由宿主对感染的反应失调引起的,主要以炎症反应、免疫功能失调和凝血功能紊乱为特征。目前,炎症反应和凝血障碍被认为是促进脓毒症和脓毒症休克患者器官功能障碍的两个驱动因素,且研究显示,由于凝血功能的异常,脓毒症患者体内微循环中常常伴随着微血栓的形成,加重器官功能障碍的进展。组织型纤溶酶原激活剂是一种溶栓剂,目前被广泛应用于脑卒中和急性心梗的溶栓治疗,但其应用受到短半衰期、全身出血风险等副作用的限制,针对其副作用,不少学者考虑以靶向给药的方式降低其副作用的限制。本文将对组织型纤溶酶原激活剂在脓毒症相关疾病中的应用及其靶向给药策略进行探讨,为脓毒症治疗及靶向用药提供新思路。
Sepsis is a serious organ dysfunction caused by a dysregulated host response to infection, estimated to result in approximately 5 million deaths worldwide annually. It is characterized by dysregulation of the host response to infection, often accompanied by inflammatory response, immune dysfunction and coagulation dysfunction. Currently, inflammation and coagulation are considered as two driving factors promoting organ dysfunction in sepsis and septic shock patients. Studies have shown that sepsis patients often have microthrombi formation in the microcirculation due to abnormalities in coagulation function. Tissue-type plasminogen activator (tPA) is widely used in thrombolytic therapy for acute stroke and acute myocardial infarction, but its application is limited by side effects such as short half-life and systemic bleeding risk. In response to its side effects, many researchers consider targeted drug delivery as a means to reduce its adverse effects. This paper will discuss the application of tissue-type plasminogen activator in sepsis-related diseases and its targeted drug delivery strategies, providing new ideas for sepsis treatment and targeted drug delivery.
[1] | Seymour, C.W., Liu, V.X., Iwashyna, T.J., et al. (2016) Assessment of Clinical Criteria for Sepsis. JAMA, 315, 762-774. https://doi.org/10.1001/jama.2016.0288 |
[2] | Van Der Poll, T., Schultz, M. and Levi, M. (2013) Sepsis and Thrombosis. Seminars in Thrombosis and Hemostasis, 39, 559-566. https://doi.org/10.1055/s-0033-1343894 |
[3] | Colucci, M., Semeraro, F., Ammollo, C., et al. (2015) Coagulopathy of Acute Sepsis. Seminars in Thrombosis and Hemostasis, 41, 650-658. https://doi.org/10.1055/s-0035-1556730 |
[4] | Giustozzi, M., Ehrlinder, H., Bongiovanni, D., et al. (2021) Coagulopathy and Sepsis: Pathophysiology, Clinical Manifestations and Treatment. Blood Reviews, 50, Article ID: 100864. https://doi.org/10.1016/j.blre.2021.100864 |
[5] | Ince, C. (2005) The Microcirculation Is the Motor of Sepsis. Critical Care, 9, S13-S19. https://doi.org/10.1186/cc3753 |
[6] | Walborn, A., Rondina, M., Mosier, M., et al. (2019) Endothelial Dysfunction Is Associated with Mortality and Severity of Coagulopathy in Patients with Sepsis and Disseminated Intravascular Coagulation. Clinical and Applied Thrombosis/Hemostasis, 25. https://doi.org/10.1177/1076029619852163 |
[7] | Iba, T. and Levy, J.H. (2018) Inflammation and Thrombosis: Roles of Neutrophils, Platelets and Endothelial Cells and Their Interactions in Thrombus Formation during Sepsis. Journal of Thrombosis and Haemostasis, 16, 231-241. https://doi.org/10.1111/jth.13911 |
[8] | Evans, C.E., Spier, A.B. and Zhao, Y.Y. (2018) Sepsis-Induced Thrombus Formation and Cell-Specific HIFs. Thrombosis Research, 171, 187-189. https://doi.org/10.1016/j.thromres.2018.08.017 |
[9] | Iba, T., Levi, M. and Levy, J.H. (2020) Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. Seminars in Thrombosis and Hemostasis, 46, 89-95. https://doi.org/10.1055/s-0039-1694995 |
[10] | Seillier, C., Hélie, P., Petit, G., et al. (2022) Roles of the Tissue-Type Plasminogen Activator in Immune Response. Cellular Immunology, 371, Article ID: 104451. https://doi.org/10.1016/j.cellimm.2021.104451 |
[11] | Novokhatny, V.V., Ingham, K.C. and Medved, L.V. (1991) Domain Structure and Domain-Domain Interactions of Recombinant Tissue Plasminogen Activator. Journal of Biological Chemistry, 266, 12994-13002. https://doi.org/10.1016/S0021-9258(18)98794-6 |
[12] | Mehra, A., Ali, C., Parcq, J., et al. (2016) The Plasminogen Activation System in Neuroinflammation. Biochimica et Biophysica Acta, 1862, 395-402. https://doi.org/10.1016/j.bbadis.2015.10.011 |
[13] | Van Zonneveld, A.J., Veerman, H., Macdonald, M.E., et al. (1986) Structure and Function of Human Tissue-Type Plasminogen Activator (T-PA). Journal of Cellular Biochemistry, 32, 169-178. https://doi.org/10.1002/jcb.240320302 |
[14] | Lin, L. and Hu, K. (2014) Tissue Plasminogen Activator and Inflammation: From Phenotype to Signaling Mechanisms. American Journal of Clinical and Experimental Immunology, 3, 30-36. |
[15] | Zhang, C., An, J., Strickland, D.K., et al. (2009) The Low-Density Lipoprotein Receptor-Related Protein 1 Mediates Tissue-Type Plasminogen Activator-Induced Microglial Activation in the Ischemic Brain. The American Journal of Pathology, 174, 586-594. https://doi.org/10.2353/ajpath.2009.080661 |
[16] | Uhl, B., Zuchtriegel, G., Puhr-Westerheide, D., et al. (2014) Tissue Plasminogen Activator Promotes Postischemic Neutrophil Recruitment via Its Proteolytic and Nonproteolytic Properties. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 1495-1504. https://doi.org/10.1161/ATVBAHA.114.303721 |
[17] | Lin, L., Wu, C. and Hu, K. (2012) Tissue Plasminogen Activator Activates NF-κB through a Pathway Involving Annexin A2/CD11b and Integrin-Linked Kinase. Journal of the American Society of Nephrology, 23, 1329-1338. https://doi.org/10.1681/ASN.2011111123 |
[18] | Xiao, X., Zhang, H., Chen, H., et al. (2020) HSF1 Alleviates Microthrombosis and Multiple Organ Dysfunction in Mice with Sepsis by Upregulating the Transcription of Tissue-Type Plasminogen Activator. Thrombosis and Haemostasis, 121, 1066-1078. https://doi.org/10.1055/a-1333-7305 |
[19] | Renckens, R., Roelofs, J., Florquin, S., et al. (2006) Endogenous Tissue-Type Plasminogen Activator Is Protective during Escherichia Coli-Induced Abdominal Sepsis in Mice. The Journal of Immunology, 177, 1189-1196. https://doi.org/10.4049/jimmunol.177.2.1189 |
[20] | Renckens, R., Roelofs, J., Stegenga, M.E., et al. (2008) Transgenic Tissue‐Type Plasminogen Activator Expression Improves Host Defense during Klebsiella Pneumonia. Journal of Thrombosis and Haemostasis, 6, 660-668. https://doi.org/10.1111/j.1538-7836.2008.02892.x |
[21] | Akol, H., Boon, E., Van Haren, F., et al. (2002) Successful Treatment of Fulminant Pneumococcal Sepsis with Recombinant Tissue Plasminogen Activator. European Journal of Internal Medicine, 13, 389-391. https://doi.org/10.1016/S0953-6205(02)00095-X |
[22] | Aiuto, L.T., Barone, S.R., Cohen, P.S., et al. (1997) Recombinant Tissue Plasminogen Activator Restores Perfusion in Meningococcal Purpura Fulminans. Critical Care Medicine, 25, 1079-1082. https://doi.org/10.1097/00003246-199706000-00028 |
[23] | Zenz, W., Muntean, W., Gallistl, S., et al. (1995) Recombinant Tissue Plasminogen Activator Treatment in Two Infants with Fulminant Meningococcemia. Pediatrics, 96, 144-148. https://doi.org/10.1542/peds.96.1.144 |
[24] | Powers, W.J., Rabinstein, A.A., Ackerson, T., et al. (2019) Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association. Stroke, 50, E344-E418. https://doi.org/10.1161/STR.0000000000000211 |
[25] | Colucci, M., Paramo, J.A. and Collen, D. (1986) Inhibition of One-Chain and Two-Chain Forms of Human Tissue-Type Plasminogen Activator by the Fast-Acting Inhibitor of Plasminogen Activator in Vitro and in Vivo. Journal of Laboratory and Clinical Medicine, 108, 53-59. |
[26] | Hacke, W., Kaste, M., Bluhmki, E., et al. (2008) Thrombolysis with Alteplase 3 to 4.5 Hours after Acute Ischemic Stroke. The New England Journal of Medicine, 359, 1317-1329. https://doi.org/10.1056/NEJMoa0804656 |
[27] | Zhang, S., Zhou, Y., Li, R., et al. (2022) Advanced Drug Delivery System against Ischemic Stroke. Journal of Controlled Release, 344, 173-201. https://doi.org/10.1016/j.jconrel.2022.02.036 |
[28] | Correa-Paz, C., Navarro Poupard, M.F., Polo, E., et al. (2019) In Vivo Ultrasound-Activated Delivery of Recombinant Tissue Plasminogen Activator from the Cavity of Sub-Micrometric Capsules. Journal of Controlled Release, 308, 162-171. https://doi.org/10.1016/j.jconrel.2019.07.017 |
[29] | Ma, Y.H., Wu, S.Y., Wu, T., et al. (2009) Magnetically Targeted Thrombolysis with Recombinant Tissue Plasminogen Activator Bound to Polyacrylic Acid-Coated Nanoparticles. Biomaterials, 30, 3343-3351. https://doi.org/10.1016/j.biomaterials.2009.02.034 |
[30] | Chen, J.P., Liu, C.H., Hsu, H.L., et al. (2016) Magnetically Controlled Release of Recombinant Tissue Plasminogen Activator from Chitosan Nanocomposites for Targeted Thrombolysis. Journal of Materials Chemistry B, 4, 2578-2590. https://doi.org/10.1039/C5TB02579F |
[31] | Tadayon, A., Jamshidi, R. and Esmaeili, A. (2016) Targeted Thrombolysis of Tissue Plasminogen Activator and Streptokinase with Extracellular Biosynthesis Nanoparticles Using Optimized Streptococcus Equi Supernatant. International Journal of Pharmaceutics, 501, 300-310. https://doi.org/10.1016/j.ijpharm.2016.02.011 |
[32] | Hu, J., Huang, S., Zhu, L., et al. (2018) Tissue Plasminogen Activator-Porous Magnetic Microrods for Targeted Thrombolytic Therapy after Ischemic Stroke. ACS Applied Materials & Interfaces, 10, 32988-32997. https://doi.org/10.1021/acsami.8b09423 |
[33] | De Saint Victor, M., Barnsley, L.C., Carugo, D., et al. (2019) Sonothrombolysis with Magnetically Targeted Microbubbles. Ultrasound in Medicine and Biology, 45, 1151-1163. https://doi.org/10.1016/j.ultrasmedbio.2018.12.014 |
[34] | Liu, C.H., Hsu, H.L., Chen, J.P., et al. (2019) Thrombolysis Induced by Intravenous Administration of Plasminogen Activator in Magnetoliposomes: Dual Targeting by Magnetic and Thermal Manipulation. Nanomedicine, 20, Article ID: 101992. https://doi.org/10.1016/j.nano.2019.03.014 |
[35] | Zhang, B., Kim, H., Wu, H., et al. (2019) Sonothrombolysis with Magnetic Microbubbles under a Rotational Magnetic Field. Ultrasonics, 98, 62-71. https://doi.org/10.1016/j.ultras.2019.06.004 |
[36] | Yang, H.W., Hua, M.Y., Lin, K.J., et al. (2012) Bioconjugation of Recombinant Tissue Plasminogen Activator to Magnetic Nanocarriers for Targeted Thrombolysis. International Journal of Nanomedicine, 7, 5159-5173. https://doi.org/10.2147/IJN.S32939 |
[37] | Huang, L., Wang, J., Huang, S., et al. (2019) Polyacrylic Acid-Coated Nanoparticles Loaded with Recombinant Tissue Plasminogen Activator for the Treatment of Mice with Ischemic Stroke. Biochemical and Biophysical Research Communications, 516, 565-570. https://doi.org/10.1016/j.bbrc.2019.06.079 |
[38] | Ma, H., Jiang, Z., Xu, J., et al. (2021) Targeted Nano-Delivery Strategies for Facilitating Thrombolysis Treatment in Ischemic Stroke. Drug Delivery, 28, 357-371. https://doi.org/10.1080/10717544.2021.1879315 |