全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

缺血性脑卒中后脑水肿的发病机制及治疗进展
The Pathogenesis and Treatment Progress of Cerebral Edema after Ischemic Stroke

DOI: 10.12677/acm.2024.1441356, PP. 2769-2778

Keywords: 缺血性脑卒中,脑水肿,机制,治疗
Ischemic Stroke
, Brain Edema, Mechanism, Treatment

Full-Text   Cite this paper   Add to My Lib

Abstract:

缺血性脑卒中已成为全球死亡和残疾的主要原因。脑水肿是缺血性脑卒中的严重并发症,会引起颅内压升高,神经系统症状迅速恶化,形成脑疝,是脑卒中后不良结局的重要危险因素。迄今为止,脑卒中后脑水肿的详细机制尚不清楚。这限制了预防和治疗策略以及药物开发的进展。本文就脑水肿的分类、病理特点、缺血性脑卒中后脑水肿的发生机制与水通道蛋白4、SUR1-TRPM4通道、基质金属蛋白酶9、microRNA、脑静脉回流、炎症反应的关系进行综述。综述了脑卒中后脑水肿治疗新药的研究进展。因此,本文综述为进一步研究和临床治疗缺血性脑卒中后脑水肿提供参考。
Ischemic stroke is associated with increasing morbidity and has become the main cause of death and disability worldwide. Cerebral edema is a serious complication arising from ischemic stroke. It causes an increase in intracranial pressure, rapid deterioration of neurological symptoms, and formation of cerebral hernia, and is an important risk factor for adverse outcomes after stroke. To date, the detailed mechanism of cerebral edema after stroke remains unclear. This limits advances in prevention and treatment strategies as well as drug development. This review discusses the classification and pathological characteristics of cerebral edema, the possible relationship of the development of cerebral edema after ischemic stroke with aquaporin 4, the SUR1-TRPM4 channel, matrix metalloproteinase 9, microRNA, cerebral venous reflux, inflammatory reactions. It also summarizes research on new therapeutic drugs for post-stroke cerebral edema. Thus, this review provides a reference for further studies and for clinical treatment of cerebral edema after ischemic stroke.

References

[1]  Deng, L.D., Qi, L., Suo, Q., et al. (2022) Transcranial Focused Ultrasound Stimulation Reduces Vasogenic Edema after Middle Cerebral Artery Occlusion in Mice. Neural Regeneration Research, 17, 2058-2063.
https://doi.org/10.4103/1673-5374.335158
[2]  Nawabi, J., Flottmann, F., Hanning, U., et al. (2019) Futile Recanalization with Poor Clinical Outcome Is Associated with Increased Edema Volume after Ischemic Stroke. Investigative Radiology, 54, 282-287.
https://doi.org/10.1097/RLI.0000000000000539
[3]  Yao, Y., Zhang, Y., Liao, X., et al. (2020) Potential Therapies for Cerebral Edema after Ischemic Stroke: A Mini Review. Frontiers in Aging Neuroscience, 12, Article ID: 618819.
https://doi.org/10.3389/fnagi.2020.618819
[4]  Liebeskind, D.S., Jüttler, E., Shapovalov, Y., et al. (2019) Cerebral Edema Associated with Large Hemispheric Infarction. Stroke, 50, 2619-2625.
https://doi.org/10.1161/STROKEAHA.118.024766
[5]  Jha, R.M., Kochanek, P.M. and Simard, J.M. (2019) Pathophysiology and Treatment of Cerebral Edema in Traumatic Brain Injury. Neuropharmacology, 145, 230-246.
https://doi.org/10.1016/j.neuropharm.2018.08.004
[6]  Jiang, X., Andjelkovic, A.V., Zhu, L., et al. (2018) Blood-Brain Barrier Dysfunction and Recovery after Ischemic Stroke. Progress in Neurobiology, 163-164, 144-171.
https://doi.org/10.1016/j.pneurobio.2017.10.001
[7]  Ji, C., Yu, X., Xu, W., et al. (2021) The Role of Glymphatic System in the Cerebral Edema Formation after Ischemic Stroke. Experimental Neurology, 340, Article ID: 113685.
https://doi.org/10.1016/j.expneurol.2021.113685
[8]  Halstead, M.R. and Geocadin, R.G. (2019) The Medical Management of Cerebral Edema: Past, Present, and Future Therapies. Neurotherapeutics, 16, 1133-1148.
https://doi.org/10.1007/s13311-019-00779-4
[9]  Stokum, J.A., Gerzanich, V. and Simard, J.M. (2016) Molecular Pathophysiology of Cerebral Edema. Journal of Cerebral Blood Flow & Metabolism, 36, 513-538.
https://doi.org/10.1177/0271678X15617172
[10]  MacAulay, N. (2021) Molecular Mechanisms of Brain Water Transport. Nature Reviews Neuroscience, 22, 326-344.
https://doi.org/10.1038/s41583-021-00454-8
[11]  MacAulay, N. and Zeuthen, T. (2010) Water Transport between CNS Compartments: Contributions of Aquaporins and Cotransporters. Neuroscience, 168, 941-956.
https://doi.org/10.1016/j.neuroscience.2009.09.016
[12]  Chen, S., Shao, L. and Ma, L. (2021) Cerebral Edema Formation after Stroke: Emphasis on Blood-Brain Barrier and the Lymphatic Drainage System of the Brain. Frontiers in Cellular Neuroscience, 15, Article ID: 716825.
https://doi.org/10.3389/fncel.2021.716825
[13]  Zhang, C., Jiang, M., Wang, W.Q., et al. (2020) Selective MGluR1 Negative Allosteric Modulator Reduces Blood-Brain Barrier Permeability and Cerebral Edema after Experimental Subarachnoid Hemorrhage. Translational Stroke Research, 11, 799-811.
https://doi.org/10.1007/s12975-019-00758-z
[14]  Garcia, J.G., Siflinger-Birnboim, A., Bizios, R., et al. (1986) Thrombin-Induced Increase in Albumin Permeability across the Endothelium. Journal of Cellular Physiology, 128, 96-104.
https://doi.org/10.1002/jcp.1041280115
[15]  Moy, A.B., Van, Engelenhoven, J., Bodmer, J., et al. (1996) Histamine and Thrombin Modulate Endothelial Focal Adhesion through Centripetal and Centrifugal Forces. Journal of Clinical Investigation, 97, 1020-1027.
https://doi.org/10.1172/JCI118493
[16]  Dore-Duffy, P., Wang, X., Mehedi, A., et al. (2007) Differential Expression of Capillary VEGF Isoforms Following Traumatic Brain Injury. Neurological Research, 29, 395-403.
https://doi.org/10.1179/016164107X204729
[17]  Zhang, Z.G., Zhang, L., Jiang, Q., et al. (2000) VEGF Enhances Angiogenesis and Promotes Blood-Brain Barrier Leakage in the Ischemic Brain. Journal of Clinical Investigation, 106, 829-838.
https://doi.org/10.1172/JCI9369
[18]  Starling, E.H. (1896) On the Absorption of Fluids from the Connective Tissue Spaces. The Journal of Physiology, 19, 312-326.
https://doi.org/10.1113/jphysiol.1896.sp000596
[19]  Simard, J.M., Kent, T.A., Chen, M., et al. (2007) Brain Oedema in Focal Ischaemia: Molecular Pathophysiology and Theoretical Implications. The Lancet Neurology, 6, 258-268.
https://doi.org/10.1016/S1474-4422(07)70055-8
[20]  Stokum, J.A., Kwon, M.S., Woo, S.K., et al. (2018) SUR1-TRPM4 and AQP4 Form a Heteromultimeric Complex That Amplifies Ion/Water Osmotic Coupling and Drives Astrocyte Swelling. Glia, 66, 108-125.
https://doi.org/10.1002/glia.23231
[21]  Stokum, J.A., Kurland, D.B., Gerzanich, V., et al. (2015) Mechanisms of Astrocyte-Mediated Cerebral Edema. Neurochemical Research, 40, 317-328.
https://doi.org/10.1007/s11064-014-1374-3
[22]  Liu, E., Sun, L., Zhang, Y., et al. (2020) Aquaporin4 Knockout Aggravates Early Brain Injury Following Subarachnoid Hemorrhage through Impairment of the Glymphatic System in Rat Brain. Acta Neurochirurgica Supplement, 127, 59-64.
https://doi.org/10.1007/978-3-030-04615-6_10
[23]  Mestre, H., Du, T., Sweeney, A.M., et al. (2020) Cerebrospinal Fluid Influx Drives Acute Ischemic Tissue Swelling. Science, 367, eaax7171.
https://doi.org/10.1126/science.aax7171
[24]  Sadana, P., Coughlin, L., Burke, J., et al. (2015) Anti-Edema Action of Thyroid Hormone in MCAO Model of Ischemic Brain Stroke: Possible Association with AQP4 Modulation. Journal of the Neurological Sciences, 354, 37-45.
https://doi.org/10.1016/j.jns.2015.04.042
[25]  Wei, X., Zhang, B., Cheng, L., et al. (2015) Hydrogen Sulfide Induces Neuroprotection against Experimental Stroke in Rats by Down-Regulation of AQP4 via Activating PKC. Brain Research, 1622, 292-299.
https://doi.org/10.1016/j.brainres.2015.07.001
[26]  Catalin, B., Rogoveanu, O.C., Pirici, I., et al. (2018) Cerebrolysin and Aquaporin 4 Inhibition Improve Pathological and Motor Recovery after Ischemic Stroke. CNS & Neurological Disorders-Drug Targets, 17, 299-308.
https://doi.org/10.2174/1871527317666180425124340
[27]  Pirici, I., Balsanu, T.A., Bogdan, C., et al. (2017) Inhibition of Aquaporin-4 Improves the Outcome of Ischaemic Stroke and Modulates Brain Paravascular Drainage Pathways. International Journal of Molecular Sciences, 19, Article No. 46.
https://doi.org/10.3390/ijms19010046
[28]  Clément, T., Rodriguez-Grande, B. and Badaut, J. (2020) Aquaporins in Brain Edema. Journal of Neuroscience Research, 98, 9-18.
https://doi.org/10.1002/jnr.24354
[29]  Alquisiras-Burgos, I., Franco-Pérez, J., Rubio-Osornio, M., et al. (2022) The Short Form of the SUR1 and Its Functional Implications in the Damaged Brain. Neural Regeneration Research, 17, 488-496.
https://doi.org/10.4103/1673-5374.320967
[30]  Alquisiras-Burgos, I., Ortiz-Plata, A., Franco-Pérez, J., et al. (2020) Resveratrol Reduces Cerebral Edema through Inhibition of De Novo SUR1 Expression Induced after Focal Ischemia. Experimental Neurology, 330, Article ID: 113353.
https://doi.org/10.1016/j.expneurol.2020.113353
[31]  Mehta, R.I., Ivanova, S., Tosun, C., et al. (2013) Sulfonylurea Receptor 1 Expression in Human Cerebral Infarcts. Journal of Neuropathology & Experimental Neurology, 72, 871-883.
https://doi.org/10.1097/NEN.0b013e3182a32e40
[32]  Jha, R.M., Rani, A., Desai, S.M., et al. (2021) Sulfonylurea Receptor 1 in Central Nervous System Injury: An Updated Review. International Journal of Molecular Sciences, 22, Article No. 11899.
https://doi.org/10.3390/ijms222111899
[33]  Chen, B., Ng, G., Gao, Y., et al. (2019) Non-Invasive Multimodality Imaging Directly Shows TRPM4 Inhibition Ameliorates Stroke Reperfusion Injury. Translational Stroke Research, 10, 91-103.
https://doi.org/10.1007/s12975-018-0621-3
[34]  Chen, B., Gao, Y., Wei, S., et al. (2019) TRPM4-Specific Blocking Antibody Attenuates Reperfusion Injury in a Rat Model of Stroke. Pflügers Archiv, 471, 1455-1466.
https://doi.org/10.1007/s00424-019-02326-8
[35]  Wang, X., Chang, Y., He, Y., et al. (2020) Glimepiride and Glibenclamide Have Comparable Efficacy in Treating Acute Ischemic Stroke in Mice. Neuropharmacology, 162, Article ID: 107845.
https://doi.org/10.1016/j.neuropharm.2019.107845
[36]  Pergakis, M., Badjatia, N., Chaturvedi, S., et al. (2019) BIIB093 (IV Glibenclamide): An Investigational Compound for the Prevention and Treatment of Severe Cerebral Edema. Expert Opinion on Investigational Drugs, 28, 1031-1040.
https://doi.org/10.1080/13543784.2019.1681967
[37]  Vorasayan, P., Bevers, M.B., Beslow, L.A., et al. (2019) Intravenous Glibenclamide Reduces Lesional Water Uptake in Large Hemispheric Infarction. Stroke, 50, 3021-3027.
https://doi.org/10.1161/STROKEAHA.119.026036
[38]  Huang, K., Hu, Y., Wu, Y., et al. (2019) Exploratory Analysis of Oral Glibenclamide in Acute Ischemic Stroke. Acta Neurologica Scandinavica, 140, 212-218.
https://doi.org/10.1111/ane.13134
[39]  Kurzepa, J., Kurzepa, J., Golab, P., et al. (2014) The Significance of Matrix Metalloproteinase (MMP)-2 and MMP-9 in the Ischemic Stroke. International Journal of Neuroscience, 124, 707-716.
https://doi.org/10.3109/00207454.2013.872102
[40]  Turner, R.J. and Sharp, F.R. (2016) Implications of MMP9 for Blood Brain Barrier Disruption and Hemorrhagic Transformation Following Ischemic Stroke. Frontiers in Cellular Neuroscience, 10, Article No. 56.
https://doi.org/10.3389/fncel.2016.00056
[41]  Sifat A.E., Vaidya, B. and Abbruscato, T.J. (2017) Blood-Brain Barrier Protection as a Therapeutic Strategy for Acute Ischemic Stroke. The AAPS Journal, 19, 957-972.
https://doi.org/10.1208/s12248-017-0091-7
[42]  Wang, L., Deng, L., Yuan, R., et al. (2020) Association of Matrix Metalloproteinase 9 and Cellular Fibronectin and Outcome in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Frontiers in Neurology, 11, Article ID: 523506.
https://doi.org/10.3389/fneur.2020.523506
[43]  Beker, M.C., Caglayan, A.B., Altunay, S., et al. (2022) Phosphodiesterase 10A Is a Critical Target for Neuroprotection in a Mouse Model of Ischemic Stroke. Molecular Neurobiology, 59, 574-589.
https://doi.org/10.1007/s12035-021-02621-5
[44]  Bernardo-Castro, S., Sousa, J.A., Brás, A., et al. (2020) Pathophysiology of Blood-Brain Barrier Permeability throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Frontiers in Neurology, 11, Article ID: 594672.
https://doi.org/10.3389/fneur.2020.594672
[45]  Datta, A., Sarmah, D., Kaur, H., et al. (2022) Post-Stroke Impairment of the Blood-Brain Barrier and Perifocal Vasogenic Edema Is Alleviated by Endovascular Mesenchymal Stem Cell Administration: Modulation of the PKCδ/MMP9/ AQP4-Mediated Pathway. Molecular Neurobiology, 59, 2758-2775.
https://doi.org/10.1007/s12035-022-02761-2
[46]  Li, S., Li, Y., Huang, S., et al. (2020) Silencing Matrix Metalloproteinase 9 Exerts a Protective Effect on Astrocytes after Oxygen-Glucose Deprivation and Is Correlated with Suppression of Aquaporin-4. Neuroscience Letters, 731, Article ID: 135047.
https://doi.org/10.1016/j.neulet.2020.135047
[47]  Bellut, M., Papp, L., Bieber, M., et al. (2021) NLPR3 Inflammasome Inhibition Alleviates Hypoxic Endothelial Cell Death in Vitro and Protects Blood-Brain Barrier Integrity in Murine Stroke. Cell Death & Disease, 13, Article No. 20.
https://doi.org/10.1038/s41419-021-04379-z
[48]  Xiong, M., Feng, Y., Huang, S., et al. (2022) Teriparatide Induces Angiogenesis in Ischemic Cerebral Infarction Zones of Rats through AC/PKA Signaling and Reduces Ischemia-Reperfusion Injury. Biomedicine & Pharmacotherapy, 148, Article ID: 112728.
https://doi.org/10.1016/j.biopha.2022.112728
[49]  Mechtouff, L., Bochaton, T., Paccalet, A., et al. (2020) Matrix Metalloproteinase-9 Relationship with Infarct Growth and Hemorrhagic Transformation in the Era of Thrombectomy. Frontiers in Neurology, 11, Article No. 473.
https://doi.org/10.3389/fneur.2020.00473
[50]  Li, G., Morris-Blanco, K.C., Lopez, M.S., et al. (2018) Impact of MicroRNAs on Ischemic Stroke: from Pre-to Post-Disease. Progress in Neurobiology, 163-164, 59-78.
https://doi.org/10.1016/j.pneurobio.2017.08.002
[51]  Wu, N., Gu, T., Lu, L., et al. (2019) Roles of MiRNA-1 and MiRNA-133 in the Proliferation and Differentiation of Myoblasts in Duck Skeletal Muscle. Journal of Cellular Physiology, 234, 3490-3499.
https://doi.org/10.1002/jcp.26857
[52]  Selvamani, A., Sathyan, P., Miranda, R.C., et al. (2012) An Antagomir to MicroRNA Let7f Promotes Neuroprotection in an Ischemic Stroke Model. PLOS ONE, 7, E32662.
https://doi.org/10.1371/journal.pone.0032662
[53]  Talebi, A., Rahnema, M. and Bigdeli, M.R. (2019) Effect of Intravenous Injection of AntagomiR-1 on Brain Ischemia. Molecular Biology Reports, 46, 1149-1155.
https://doi.org/10.1007/s11033-018-04580-y
[54]  Yu, X. and Li, X. (2020) MicroRNA-1906 Protects Cerebral Ischemic Injury through Activating Janus Kinase 2/Signal Transducer and Activator of Transcription 3 Pathway in Rats. Neuroreport, 31, 871-878.
https://doi.org/10.1097/WNR.0000000000001456
[55]  Yu, W., Rives, J., Welch, B., et al. (2009) Hypoplasia or Occlusion of the Ipsilateral Cranial Venous Drainage Is Associated with Early Fatal Edema of Middle Cerebral Artery Infarction. Stroke, 40, 3736-3739.
https://doi.org/10.1161/STROKEAHA.109.563080
[56]  Faizy, T.D., Kabiri, R., Christensen, S., et al. (2021) Venous Outflow Profiles Are Linked to Cerebral Edema Formation at Noncontrast Head CT after Treatment in Acute Ischemic Stroke Regardless of Collateral Vessel Status at CT Angiography. Radiology, 299, 682-690.
https://doi.org/10.1148/radiol.2021203651
[57]  Faizy, T.D., Kabiri, R., Christensen, S., et al. (2021) Association of Venous Outflow Profiles and Successful Vessel Reperfusion after Thrombectomy. Neurology, 96, E2903-E2911.
https://doi.org/10.1212/WNL.0000000000012106
[58]  He, H.Y., Ren, L., Guo, T., et al. (2019) Neuronal Autophagy Aggravates Microglial Inflammatory Injury by Downregulating CX3CL1/Fractalkine after Ischemic Stroke. Neural Regeneration Research, 14, 280-288.
https://doi.org/10.4103/1673-5374.244793
[59]  Mulder, I.A., Van Bavel, E.T., De Vries, H.E., et al. (2021) Adjunctive Cytoprotective Therapies in Acute Ischemic Stroke: A Systematic Review. Fluids and Barriers of the CNS, 18, Article No. 46.
https://doi.org/10.1186/s12987-021-00280-1
[60]  Qiu, Y.M., Zhang, C.L., Chen, A.Q., et al. (2021) Immune Cells in the BBB Disruption after Acute Ischemic Stroke: Targets for Immune Therapy? Frontiers in Immunology, 12, Article ID: 678744.
https://doi.org/10.3389/fimmu.2021.678744
[61]  Dhanesha, N., Jain, M., Tripathi, A.K., et al. (2020) Targeting Myeloid-Specific Integrin α9β1 Improves Short-and Long-Term Stroke Outcomes in Murine Models with Preexisting Comorbidities by Limiting Thrombosis and Inflammation. Circulation Research, 126, 1779-1794.
https://doi.org/10.1161/CIRCRESAHA.120.316659
[62]  Hou, Y., Yang, D., Xiang, R., et al. (2019) N2 Neutrophils May Participate in Spontaneous Recovery after Transient Cerebral Ischemia by Inhibiting Ischemic Neuron Injury in Rats. International Immunopharmacology, 77, Article ID: 105970.
https://doi.org/10.1016/j.intimp.2019.105970
[63]  Bonaventura, A., Liberale, L., Vecchié, A., et al. (2016) Update on Inflammatory Biomarkers and Treatments in Ischemic Stroke. International Journal of Molecular Sciences, 17, Article No. 1967.
https://doi.org/10.3390/ijms17121967
[64]  Kanazawa, M., Takahashi, T., Nishizawa, M., et al. (2017) Therapeutic Strategies to Attenuate Hemorrhagic Transformation after Tissue Plasminogen Activator Treatment for Acute Ischemic Stroke. Journal of Atherosclerosis and Thrombosis, 24, 240-253.
https://doi.org/10.5551/jat.RV16006
[65]  Lin, S.Y., Wang, Y.Y., Chang, C.Y., et al. (2021) TNF-α Receptor Inhibitor Alleviates Metabolic and Inflammatory Changes in a Rat Model of Ischemic Stroke. Antioxidants (Basel), 10, Article No. 851.
https://doi.org/10.3390/antiox10060851
[66]  Howell, J.A. and Bidwell, G.R. (2020) Targeting the NF-κB Pathway for Therapy of Ischemic Stroke. Therapeutic Delivery, 11, 113-123.
https://doi.org/10.4155/tde-2019-0075
[67]  Zhou, Y.F., Li, Y.N., Jin, H.J., et al. (2018) Sema4D/PlexinB1 Inhibition Ameliorates Blood-Brain Barrier Damage and Improves Outcome after Stroke in Rats. FASEB Journal, 32, 2181-2196.
https://doi.org/10.1096/fj.201700786RR
[68]  Stokum, J.A., Gerzanich, V., Sheth, K.N., et al. (2020) Emerging Pharmacological Treatments for Cerebral Edema: Evidence from Clinical Studies. The Annual Review of Pharmacology and Toxicology, 60, 291-309.
https://doi.org/10.1146/annurev-pharmtox-010919-023429
[69]  Shah, A., Almenawer, S. and Hawryluk, G. (2019) Timing of Decompressive Craniectomy for Ischemic Stroke and Traumatic Brain Injury: A Review. Frontiers in Neurology, 10, Article No. 11.
https://doi.org/10.3389/fneur.2019.00011
[70]  Kimberly, W.T., Bevers, M.B., Von Kummer, R., et al. (2018) Effect of IV Glyburide on Adjudicated Edema Endpoints in the GAMES-RP Trial. Neurology, 91, E2163-E2169.
https://doi.org/10.1212/WNL.0000000000006618
[71]  Zhang, J., Bhuiyan, M., Zhang, T., et al. (2020) Modulation of Brain Cation-Cl(?) Cotransport via the SPAK Kinase Inhibitor ZT-1a. Nature Communications, 11, Article No. 78.
https://doi.org/10.1038/s41467-019-13851-6
[72]  Wang, Q., Deng, Y., Huang, L., et al. (2019) Hypertonic Saline Downregulates Endothelial Cell-Derived VEGF Expression and Reduces Blood-Brain Barrier Permeability Induced by Cerebral Ischaemia via the VEGFR2/ENOS Pathway. International Journal of Molecular Medicine, 44, 1078-1090.
https://doi.org/10.3892/ijmm.2019.4262
[73]  Zuo, X., Lu, J., Manaenko, A., et al. (2019) MicroRNA-132 Attenuates Cerebral Injury by Protecting Blood-Brain-Barrier in MCAO Mice. Experimental Neurology, 316, 12-19.
https://doi.org/10.1016/j.expneurol.2019.03.017
[74]  Sadeghian, N., Shadman, J., Moradi, A., et al. (2019) Calcitriol Protects the Blood-Brain Barrier Integrity against Ischemic Stroke and Reduces Vasogenic Brain Edema via Antioxidant and Antiapoptotic Actions in Rats. Brain Research Bulletin, 150, 281-289.
https://doi.org/10.1016/j.brainresbull.2019.06.010
[75]  Sheth, K.N., Kimberly, W.T., Elm, J.J., et al. (2014) Exploratory Analysis of Glyburide as a Novel Therapy for Preventing Brain Swelling. Neurocritical Care, 21, 43-51.
https://doi.org/10.1007/s12028-014-9970-2
[76]  Sheth, K.N., Petersen, N.H., Cheung, K., et al. (2018) Long-Term Outcomes in Patients Aged ≤ 70 Years with Intravenous Glyburide from the Phase II GAMES-RP Study of Large Hemispheric Infarction: An Exploratory Analysis. Stroke, 49, 1457-1463.
https://doi.org/10.1161/STROKEAHA.117.020365

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133