全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中性粒细胞免疫调节在骨组织愈合中的研究进展
Research Progress on Neutrophil Immune Regulation in Bone Tissue Healing

DOI: 10.12677/acm.2024.1441352, PP. 2729-2735

Keywords: 中性粒细胞,免疫可塑性,骨愈合,免疫调节
Neutrophil
, Immunoplasticity, Bone Healing, Immune Regulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

骨组织受到损伤后,会激发一系列免疫和炎症反应,这些反应在骨微环境中的启动、调节以及最终的恢复过程对骨愈合结果起着至关重要的作用。精确、主动调控免疫细胞反应有利于实现炎性控制和良好骨再生。中性粒细胞作为先天性免疫系统的第一道防线,在骨损伤因子的诱导下,骨髓和系统中性粒细胞可迁移至骨损伤部位,与局部中性粒细胞发挥重要功能,包括吞噬、脱颗粒、释放活性氧(reactive oxygen species, ROS)和中性粒细胞胞外诱捕网(neutrophil extracellular traps, NETs)。在骨愈合过程中,中性粒细胞数量、活性、表型和效应功能变化都会改变骨愈合的最终结果。因此本文就中性粒细胞在骨愈合过程中的时序性、表型和功能可塑性调控进行综述。
Bone injury will trigger immune-inflammatory responses in varying degrees. And the occurrence, regulation and conclusion of inflammatory responses in the bone micro-environment have a significant impact on the outcomes of bone healing. Precise and active regulation of immune cell responses is conducive to inflammatory control and favorable bone regeneration. Serving as the initial defense of the innate immune system, neutrophils from the bone marrow and systemic circulation can mobilize to the location of bone injury, which is triggered by factors causing bone injury. They perform crucial roles in conjunction with the resident neutrophils at the site, including phagocytosis, degranulation, release of reactive oxygen species (ROS) and neutrophil extracellular traps (NETs). During the process of bone healing, changes in neutrophil numbers, activities, phenotypes and effector functions may alter the final outcome of bone healing. This article reviews the regulatory role of neutrophils during bone healing and their effects on osteogenesis.

References

[1]  Kraus, R.F. and Gruber, M.A. (2021) Neutrophils-from Bone Marrow to First-Line Defense of the Innate Immune System. Frontiers in Immunology, 12, Article 767175.
https://doi.org/10.3389/fimmu.2021.767175
[2]  Adrover, J.M., Del, F.C., Crainiciuc, G., et al. (2019) A Neutrophil Timer Coordinates Immune Defense and Vascular Protection. Immunity, 50, 390-402.
https://doi.org/10.1016/j.immuni.2019.01.002
[3]  Reglero-Real, N., Rolas, L. and Nourshargh, S. (2019) Leukocyte Trafficking: Time to Take Time Seriously. Immunity, 50, 273-275.
https://doi.org/10.1016/j.immuni.2019.01.013
[4]  Casanova-Acebes, M., Pitaval, C., Weiss, L.A., et al. (2013) Rhythmic Modulation of the Hematopoietic Niche through Neutrophil Clearance. Cell, 153, 1025-1035.
https://doi.org/10.1016/j.cell.2013.04.040
[5]  Herisson, F., Frodermann, V., Courties, G., et al. (2018) Direct Vascular Channels Connect Skull Bone Marrow and the Brain Surface Enabling Myeloid Cell Migration. Nature Neuroscience, 21, 1209-1217.
https://doi.org/10.1038/s41593-018-0213-2
[6]  叶依依. 中性粒细胞的异质性与肿瘤[J]. 中国癌症防治杂志, 2023, 15(6): 677-683.
[7]  Chatfield, S.M., Thieblemont, N. and Witko-Sarsat, V. (2018) Expanding Neutrophil Horizons: New Concepts in Inflammation. Journal of Innate Immunity, 10, 422-431.
https://doi.org/10.1159/000493101
[8]  Neves, J., Zhu, J., Sousa-Victor, P., et al. (2016) Immune Modulation by MANF Promotes Tissue Repair and Regenerative Success in the Retina. Science, 353, aaf3646.
https://doi.org/10.1126/science.aaf3646
[9]  El-Jawhari, J.J., Jones, E. and Giannoudis, P.V. (2016) The Roles of Immune Cells in Bone Healing; What We Know, Do not Know and Future Perspectives. Injury, 47, 2399-2406.
https://doi.org/10.1016/j.injury.2016.10.008
[10]  Zhang, B., Su, Y., Zhou, J., et al. (2021) Toward a Better Regeneration through Implant-Mediated Immunomodulation: Harnessing the Immune Responses. Advanced Science, 8, e2100446.
https://doi.org/10.1002/advs.202100446
[11]  Sorkin, M., Huber, A.K., Hwang, C., et al. (2020) Regulation of Heterotopic Ossification by Monocytes in a Mouse Model of Aberrant Wound Healing. Nature Communications, 11, Article No. 722.
https://doi.org/10.1038/s41467-019-14172-4
[12]  Medeiros, N.I., Mattos, R.T., Menezes, C.A., et al. (2018) IL-10 and TGF-Beta Unbalanced Levels in Neutrophils Contribute to Increase Inflammatory Cytokine Expression in Childhood Obesity. European Journal of Nutrition, 57, 2421-2430.
https://doi.org/10.1007/s00394-017-1515-y
[13]  马亚萍, 王维群, 张顶梅, 等. 骨免疫调制(osteoimmunomodulation)在成骨中的研究进展[J]. 细胞与分子免疫学杂志, 2023, 39(8): 759-766.
[14]  Claes, L., Recknagel, S. and Ignatius, A. (2012) Fracture Healing under Healthy and Inflammatory Conditions. Nature Reviews Rheumatology, 8, 133-143.
https://doi.org/10.1038/nrrheum.2012.1
[15]  Newman, H., Shih, Y.V. and Varghese, S. (2021) Resolution of Inflammation in Bone Regeneration: From Understandings to Therapeutic Applications. Biomaterials, 277, Article 121114.
https://doi.org/10.1016/j.biomaterials.2021.121114
[16]  蔡卜磊, 杨璐颖, 王乐, 等. 中性粒细胞——组织修复的启动者[J]. 实用口腔医学杂志, 2023, 39(5): 553-561.
[17]  牛佳伟, 魏杰. 巨噬细胞在骨折愈合过程中的作用[J]. 中国现代医学杂志, 2019, 29(11): 54-58.
[18]  Bastian, O., Pillay, J., Alblas, J., et al. (2011) Systemic Inflammation and Fracture Healing. Journal of Leukocyte Biology, 89, 669-673.
https://doi.org/10.1189/jlb.0810446
[19]  Hoff, P., Gaber, T., Strehl, C., et al. (2016) Immunological Characterization of the Early Human Fracture Hematoma. Immunologic Research, 64, 1195-1206.
https://doi.org/10.1007/s12026-016-8868-9
[20]  Kolaczkowska, E. and Kubes, P. (2013) Neutrophil Recruitment and Function in Health and Inflammation. Nature Reviews Immunology, 13, 159-175.
https://doi.org/10.1038/nri3399
[21]  Schell, H., Duda, G.N., Peters, A., et al. (2017) The Haematoma and Its Role in Bone Healing. Journal of Experimental Orthopaedics, 4, Article No. 5.
https://doi.org/10.1186/s40634-017-0079-3
[22]  Leibovich, S.J. and Ross, R. (1975) The Role of the Macrophage in Wound Repair. A Study with Hydrocortisone and Antimacrophage Serum. The American Journal of Pathology, 78, 71-100.
[23]  Alnaeeli, M. and Teng, Y.T. (2009) Dendritic Cells Differentiate into Osteoclasts in Bone Marrow Microenvironment in vivo. Blood, 113, 264-265.
https://doi.org/10.1182/blood-2008-09-180836
[24]  Blair, R.J., Meng, H., Marchese, M.J., et al. (1997) Human Mast Cells Stimulate Vascular Tube Formation. Tryptase Is a Novel, Potent Angiogenic Factor. Journal of Clinical Investigation, 99, 2691-2700.
https://doi.org/10.1172/JCI119458
[25]  Hankenson, K.D., Gagne, K. and Shaughnessy, M. (2015) Extracellular Signaling Molecules to Promote Fracture Healing and Bone Regeneration. Advanced Drug Delivery Reviews, 94, 3-12.
https://doi.org/10.1016/j.addr.2015.09.008
[26]  Kovach, T.K., Dighe, A.S., Lobo, P.I., et al. (2015) Interactions between MSCs and Immune Cells: Implications for Bone Healing. Journal of Immunology Research, 2015, Article ID: 752510.
https://doi.org/10.1155/2015/752510
[27]  Bouchery, T. and Harris, N. (2019) Neutrophil-Macrophage Cooperation and Its Impact on Tissue Repair. Immunology & Cell Biology, 97, 289-298.
https://doi.org/10.1111/imcb.12241
[28]  Schulz, C., Petzold, T. and Ishikawa-Ankerhold, H. (2021) Macrophage Regulation of Granulopoiesis and Neutrophil Functions. Antioxidants & Redox Signaling, 35, 182-191.
https://doi.org/10.1089/ars.2020.8203
[29]  李骁. 免疫调节在骨组织愈合中的研究进展[J]. 重庆医学, 2021, 50(18): 3225-3229.
[30]  Ono, T. and Takayanagi, H. (2017) Osteoimmunology in Bone Fracture Healing. Current Osteoporosis Reports, 15, 367-375.
https://doi.org/10.1007/s11914-017-0381-0
[31]  Graves, D.T., Ding, Z. and Yang, Y. (2020) The Impact of Diabetes on Periodontal Diseases. Periodontology, 82, 214-224.
https://doi.org/10.1111/prd.12318
[32]  Kovtun, A., Messerer, D., Scharffetter-Kochanek, K., et al. (2018) Neutrophils in Tissue Trauma of the Skin, Bone, and Lung: Two Sides of the Same Coin. Journal of Immunology Research, 2018, Article ID: 8173983.
https://doi.org/10.1155/2018/8173983
[33]  Sly, L.M. and McKay, D.M. (2022) Macrophage Immunotherapy: Overcoming Impediments to Realize Promise. Trends in Immunology, 43, 959-968.
https://doi.org/10.1016/j.it.2022.10.002
[34]  单沁. 骨组织工程中调节巨噬细胞行为促进骨愈合的策略[J]. 中国生物医学工程学报, 2022, 41(5): 614-620.
[35]  谢雪梅, 任仟, 罗鸿博, 等. 单细胞水平解析中性粒细胞异质性的研究进展[J]. 中国免疫学杂志, 2022, 38(23): 2927-2932.
[36]  Bastian, O.W., Croes, M., Alblas, J., et al. (2018) Neutrophils Inhibit Synthesis of Mineralized Extracellular Matrix by Human Bone Marrow-Derived Stromal Cells in vitro. Frontiers in Immunology, 9, Article 945.
https://doi.org/10.3389/fimmu.2018.00945
[37]  Fridlender, Z.G., Sun, J., Kim, S., et al. (2009) Polarization of Tumor-Associated Neutrophil Phenotype by TGF-Beta: “N1” versus “N2” TAN. Cancer Cell, 16, 183-194.
https://doi.org/10.1016/j.ccr.2009.06.017
[38]  Ohms, M., Moller, S. and Laskay, T. (2020) An Attempt to Polarize Human Neutrophils toward N1 and N2 Phenotypes in vitro. Frontiers in Immunology, 11, Article 532.
https://doi.org/10.3389/fimmu.2020.00532
[39]  Chan, J.K., Glass, G.E., Ersek, A., et al. (2015) Low-Dose TNF Augments Fracture Healing in Normal and Osteoporotic Bone by Up-Regulating the Innate Immune Response. EMBO Molecular Medicine, 7, 547-561.
https://doi.org/10.15252/emmm.201404487
[40]  Wu, M., Chen, G. and Li, Y.P. (2016) TGF-Beta and BMP Signaling in Osteoblast, Skeletal Development, and Bone Formation, Homeostasis and Disease. Bone Research, 4, Article No. 16009.
https://doi.org/10.1038/boneres.2016.9
[41]  Jhunjhunwala, S., Aresta-DaSilva, S., Tang, K., et al. (2015) Neutrophil Responses to Sterile Implant Materials. PLOS ONE, 10, e137550.
https://doi.org/10.1371/journal.pone.0137550
[42]  Fetz, A.E. and Bowlin, G.L. (2022) Neutrophil Extracellular Traps: Inflammation and Biomaterial Preconditioning for Tissue Engineering. Tissue Engineering-Part B: Reviews, 28, 437-450.
https://doi.org/10.1089/ten.teb.2021.0013
[43]  Abaricia, J.O., Shah, A.H., Musselman, R.M., et al. (2020) Hydrophilic Titanium Surfaces Reduce Neutrophil Inflammatory Response and NETosis. Biomaterials Science, 8, 2289-2299.
https://doi.org/10.1039/C9BM01474H
[44]  Avery, D., Morandini, L., Celt, N., et al. (2023) Immune Cell Response to Orthopedic and Craniofacial Biomaterials Depends on Biomaterial Composition. Acta Biomaterialia, 161, 285-297.
https://doi.org/10.1016/j.actbio.2023.03.007
[45]  Gao, Z., Yu, Y., Dai, K., et al. (2022) Engineering Neutrophil Immunomodulatory Hydrogels Promoted Angiogenesis. ACS Applied Materials & Interfaces, 14, 39746-39758.
https://doi.org/10.1021/acsami.2c08600
[46]  Selders, G.S., Fetz, A.E., Radic, M.Z., et al. (2017) An Overview of the Role of Neutrophils in Innate Immunity, Inflammation and Host-Biomaterial Integration. Regenerative Biomaterials, 4, 55-68.
https://doi.org/10.1093/rb/rbw041
[47]  Bartneck, M. and Wang, J. (2019) Therapeutic Targeting of Neutrophil Granulocytes in Inflammatory Liver Disease. Frontiers in Immunology, 10, Article 2257.
https://doi.org/10.3389/fimmu.2019.02257

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133