|
基于倾向得分匹配肺粘液腺癌的临床、影像及病理的相关分析
|
Abstract:
目的:本研究比较了肺粘液腺癌与非粘液腺癌的临床、影像学及病理特征,同时探讨了肺粘液腺癌的预测价值。方法:本研究收集了自2017年3月至2023年3月期间在青岛大学附属医院胸外科接受手术治疗且临床分期为I~II期的患者976名(术后病理为肺粘液腺癌患者292名,非粘液腺癌患者684名),回顾性地分析了所有患者的临床基线资料、影像学特征资料、组织病理学特征资料等,并进行倾向得分匹配(propensity score matching, PSM),通过二元logistic分析进一步探索鉴别肺粘液腺癌与非粘液腺癌的影响因素,并绘制出受试者工作特征(receiver operating characteristic curve, ROC)曲线评价鉴别的性能。所有统计学分析均使用SPSS软件(版本:25.0)进行,所有统计检验均为双侧检验。P < 0.05被认为存在统计学差异。结果:单因素分析显示,一般资料方面,两组在年龄上(P = 0.042)和吸烟史上(P = 0.045)有统计学差异。而两组在年龄方面没有明显的统计学差异(P = 0.482),术前血液检测中淋巴细胞水平(P < 0.001)与术前NLR (P < 0.001)两组间存在显著差异。影像学资料上提示两组之间在肿瘤位置(P < 0.001)、影像学分类(P < 0.001)、影像学肿瘤最大径(P < 0.001)、肿瘤实性成分最大径(P < 0.001)、CTR (P < 0.001)、支气管充气征(P < 0.001)、空泡征(P < 0.001)、胸膜牵拉征(P < 0.001)上有着显著差异。相较于非粘液腺癌发生于上叶,粘液腺癌组多发生于肺下叶,且更多以实性结节为主;更多的患者出现支气管充气征、空洞征,而胸膜牵拉征在非粘液腺癌患者的影像学图像上更易发现。病理学相关资料结果提示两组患者在是否存在实体、乳头成分(P = 0.90),是否侵犯脏层胸膜(P = 0.696),解剖部位(P = 0.125)均无显著统计学差异。除此之外病理T分期(P < 0.001)、病理N分期(P < 0.001)、病理TNM分期(P < 0.001)、手术清扫淋巴结的个数(P < 0.001)、术后病理显示阳性淋巴结的组数(P = 0.008)、阳性淋巴结的总个数(P = 0.009)均有显著统计学差异。PSM后两组均有292名患者纳入研究,两组患者在年龄(P = 0.885)、性别(P = 0.665)、吸烟人数(P = 0.756)等基本资料上均无统计学差异,匹配性能良好。匹配后两组间术前血清CEA (P = 0.014)出现了差异,两组术后病理显示阳性淋巴结的组数(P = 0.114)、阳性淋巴结的总个数(P = 0.096)无明显差异,其余结果较匹配前相似。多因素分析显示实性结节(P = 0.018)、影像学肿瘤最大径(P = 0.004)、CTR (P < 0.001)、胸膜牵拉征(P < 0.001)、磨玻璃结节(P = 0.001)、支气管充气征(P < 0.001)、空洞征(P < 0.001)、Ki-67 (P < 0.001)均是鉴别两者的影响因素。ROC曲线结果表示在区分两组患者方面具有较好的性能,曲线下面积(AUC)为0.86。结论:再去除两组在年龄、吸烟史等混杂因素影响后,与非粘液腺癌相比,肺粘液腺癌更多存在影像学特征且以实性成分为主,影像学最大径更大,CTR更高甚至为1。
Objective: This study compared the clinical, imaging and pathological characteristics of pulmonary mucinous adenocarcinoma and non-mucinous adenocarcinoma, and also explored the predictive value of pulmonary mucinous adenocarcinoma. Methods: This study collected 976 patients who underwent surgical treatment in the Thoracic Surgery Department of Qingdao University Affiliated Hospital from March 2017 to March 2023 and were clinically staged I-II (292 patients whose postoperative pathology was pulmonary mucinous adenocarcinoma and 684 patients whose postoperative pathology was pulmonary non-mucinous adenocarcinoma). The clinical baseline data, imaging characteristics data, histopathological characteristics data of all patients were retrospectively analyzed, and propensity score matching (PSM) was performed. The analysis further explored the factors influencing the differentiation of pulmonary mucinous adenocarcinoma and pulmonary non-mucinous adenocarcinoma, and drew a receiver operating characteristic (ROC) curve to evaluate the performance of identification. All
[1] | Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. https://doi.org/10.3322/caac.21492 |
[2] | Xia, C., Dong, X., Li, H., et al. (2022) Cancer Statistics in China and United States, 2022: Profiles, Trends, and Determinants. Chinese Medical Journal, 135, 584-590. https://doi.org/10.1097/CM9.0000000000002108 |
[3] | Travis, W.D., Brambilla, E., Noguchi, M., et al. (2011) International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 6, 244-285. https://doi.org/10.1097/JTO.0b013e318206a221 |
[4] | 方三高, 陈真伟, 魏建国. 2021年第5版WHO胸部肿瘤分类[J]. 诊断病理学杂志, 2021, 28(7): 591-593 607. |
[5] | Yoshizawa, A., Motoi, N., Riely, G.J., et al. (2011) Impact of Proposed IASLC/ATS/ERS Classification of Lung Adenocarcinoma: Prognostic Subgroups and Implications for Further Revision of Staging Based on Analysis of 514 Stage I Cases. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc, 24, 653-664. https://doi.org/10.1038/modpathol.2010.232 |
[6] | Mazzone, P.J. and Lam, L. (2022) Evaluating the Patient with a Pulmonary Nodule: A Review. JAMA, 327, 264-273. https://doi.org/10.1001/jama.2021.24287 |
[7] | Zhang, S., Yu, X., Huang, Y., et al. (2022) Pneumonic-Type Invasive Mucinous Adenocarcinoma and Infectious Pneumonia: Clinical and CT Imaging Analysis from Multiple Centers. BMC Pulmonary Medicine, 22, Article No. 460. https://doi.org/10.1186/s12890-022-02268-5 |
[8] | Kim, T.H., Kim, S.J., Ryu, Y.H., et al. (2006) Differential CT Features of Infectious Pneumonia versus Bronchioloalveolar Carcinoma (BAC) Mimicking Pneumonia. European Radiology, 16, 1763-1768. https://doi.org/10.1007/s00330-005-0101-5 |
[9] | Warth, A., Muley, T., Kossakowski, C.A., et al. (2015) Prognostic Impact of Intra-Alveolar Tumor Spread in Pulmonary Adenocarcinoma. The American Journal of Surgical Pathology, 39, 793-801. https://doi.org/10.1097/PAS.0000000000000409 |
[10] | Gow, C.H., Hsieh, M.S., Liu, Y.N., et al. (2021) Clinicopathological Features and Survival Outcomes of Primary Pulmonary Invasive Mucinous Adenocarcinoma. Cancers (Basel), 13, Article No. 4103. https://doi.org/10.3390/cancers13164103 |
[11] | Yoshizawa, A., Sumiyoshi, S., Sonobe, M., et al. (2013) Validation of the IASLC/ATS/ERS Lung Adenocarcinoma Classification for Prognosis and Association with EGFR and KRAS Gene Mutations: Analysis of 440 Japanese Patients. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 8, 52-61. https://doi.org/10.1097/JTO.0b013e3182769aa8 |
[12] | Travis, W.D., Brambilla, E., Nicholson, A.G., et al. (2015) The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 10, 1243-1260. |
[13] | Lee, H.Y., Cha, M.J., Lee, K.S., et al. (2016) Prognosis in Resected Invasive Mucinous Adenocarcinomas of the Lung: Related Factors and Comparison with Resected Nonmucinous Adenocarcinomas. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 11, 1064-1073. https://doi.org/10.1016/j.jtho.2016.03.011 |
[14] | Kadota, K., Yeh, Y.C., D’angelo, S.P., et al. (2014) Associations between Mutations and Histologic Patterns of Mucin in Lung Adenocarcinoma: Invasive Mucinous Pattern and Extracellular Mucin Are Associated with KRAS Mutation. The American Journal of Surgical Pathology, 38, 1118-1127. https://doi.org/10.1097/PAS.0000000000000246 |
[15] | Russell, P.A., Wainer, Z., Wright, G.M., et al. (2011) Does Lung Adenocarcinoma Subtype Predict Patient Survival? A Clinicopathologic Study Based on the New International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Lung Adenocarcinoma Classification. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 6, 1496-1504. https://doi.org/10.1097/JTO.0b013e318221f701 |
[16] | Cupp, M.A., Cariolou, M., Tzoulaki, I., et al. (2020) Neutrophil to Lymphocyte Ratio and Cancer Prognosis: An Umbrella Review of Systematic Reviews and Meta-Analyses of Observational Studies. BMC Medicine, 18, Article No. 360. https://doi.org/10.1186/s12916-020-01817-1 |
[17] | Naszai, M., Kurjan, A. and Maughan, T.S. (2021) The Prognostic Utility of Pre-Treatment Neutrophil-to-Lymphocyte-Ratio (NLR) in Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancer Medicine, 10, 5983-5997. https://doi.org/10.1002/cam4.4143 |
[18] | Torres, P.P., Capobianco, J., Montandon Júnior, M.E., et al. (2012) Aspects of Bronchioloalveolar Carcinoma and of Adenocarcinoma with a Bronchioloalveolar Component: CT Findings. Jornal Brasileiro de Pneumologia, 38, 218-225. https://doi.org/10.1590/S1806-37132012000200012 |
[19] | Bacha, D., Ayadi-Kaddour, A., Smati, B., et al. (2008) A Pulmonary Mucinous Cystic Tumour of Borderline Malignancy. Pathologica, 100, 189-191. |
[20] | Wang, T., Yang, Y., Liu, X., et al. (2021) Primary Invasive Mucinous Adenocarcinoma of the Lung: Prognostic Value of CT Imaging Features Combined with Clinical Factors. Korean Journal of Radiology, 22, 652-662. https://doi.org/10.3348/kjr.2020.0454 |
[21] | Woo, W., Yang, Y.H., Cha, Y.J., et al. (2022) Prognosis of Resected Invasive Mucinous Adenocarcinoma Compared with the IASLC Histologic Grading System for Invasive Nonmucinous Adenocarcinoma: Surgical Database Study in the TKIs Era in Korea. Thorac Cancer, 13, 3310-3321. https://doi.org/10.1111/1759-7714.14687 |
[22] | Sundaram, B., Chughtai, A.R. and Kazerooni, E.A. (2010) Multidetector High-Resolution Computed Tomography of the Lungs: Protocols and Applications. Journal of Thoracic Imaging, 25, 125-141. https://doi.org/10.1097/RTI.0b013e3181d9ca37 |
[23] | Tsutani, Y., Miyata, Y., Mimae, T., et al. (2013) The Prognostic Role of Pathologic Invasive Component Size, Excluding Lepidic Growth, in Stage I Lung Adenocarcinoma. The Journal of Thoracic and Cardiovascular Surgery, 146, 580-585. https://doi.org/10.1016/j.jtcvs.2013.04.032 |
[24] | Hashizume, T., Yamada, K., Okamoto, N., et al. (2008) Prognostic Significance of Thin-Section CT Scan Findings in Small-Sized Lung Adenocarcinoma. Chest, 133, 441-447. https://doi.org/10.1378/chest.07-1533 |
[25] | Gao, F., Li, M., Zhang, Z., et al. (2019) Morphological Classification of Pre-Invasive Lesions and Early-Stage Lung Adenocarcinoma Based on CT Images. European Radiology, 29, 5423-5430. https://doi.org/10.1007/s00330-019-06149-0 |
[26] | Warth, A., Muley, T., Meister, M., et al. (2012) The Novel Histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society Classification System of Lung Adenocarcinoma Is a Stage-Independent Predictor of Survival. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 30, 1438-1446. https://doi.org/10.1200/JCO.2011.37.2185 |