全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

预测中国GDP增长率:基于R语言和机器学习的分析
Forecasting China’s GDP Growth Rate: An Analysis Based on R Language and Machine Learning

DOI: 10.12677/mm.2024.144095, PP. 830-844

Keywords: 中国GDP增长率,随机森林,多元回归模型,固定资产,机器学习模型
China’s GDP Growth Rate
, Random Forest, Multiple Regression Model, Fixed Assets, Machine Learning Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文旨在通过运用R语言和机器学习技术,包括多元线性回归和随机森林模型,对中国的GDP增长率进行预测。研究探讨了GDP增长率对中国宏观经济政策和商业策略的重要性,进一步探讨了选取合适的预测模型。多元回归模型旨在探究各经济指标对GDP变动的影响,而随机森林模型则用于捕捉数据间的复杂非线性关系,并通过构建多个决策树提高预测的准确性。多元回归模型显示固定资产和工业是影响中国GDP增长率的显著因素,而CPI和贸易平衡的影响不显著。随机森林模型则强调了固定资产和工业在预测中国GDP增长率中的重要性。最后,论文指出了固定资产和工业对GDP增长的显著影响,并讨论了研究中存在的问题和未来的研究方向。
This paper aims to forecast China’s GDP growth rate by using R language and machine learning techniques, including multiple linear regression and random forest model. This paper discusses the importance of GDP growth rate to China’s macroeconomic policy and business strategy, and further discusses the selection of appropriate forecasting models. The multiple regression model aims to explore the impact of various economic indicators on GDP changes, while the random forest model is used to capture complex nonlinear relationships between data and improve the accuracy of prediction by constructing multiple decision trees. The multiple regression model shows that fixed assets and industry are significant factors affecting China’s GDP growth rate, while CPI and trade balance have no significant effects. The random forest model emphasizes the importance of fixed assets and industry in predicting China’s GDP growth rate. Finally, the paper points out the significant impact of fixed assets and industry on GDP growth, and discusses the existing problems and future research directions.

References

[1]  任昱衡. 数据挖掘: 你必须知道的32个经典案例[M]. 北京: 电子工业出版社, 2018.
[2]  袁志刚, 余宇新. 中国经济长期增长趋势与短期波动[J]. 学术月刊, 2012, 44(7): 62-72.
[3]  王朝霞. 数据挖掘[M]. 北京: 电子工业出版社, 2018.
[4]  余宇新, 史建明. 洞穿变局: 数字时代与新商业文明[M]. 上海: 上海人民出版社出版, 2022.
[5]  芮雪莹. 基于随机森林的中国上市公司财务舞弊预测模型[D]: [硕士学位论文]. 上海: 上海财经大学, 2020.
[6]  叶莉. 基于Shapley回归框架的中国GDP预测研究[D]: [硕士学位论文]. 成都: 西南财经大学, 2021.
[7]  Williams, J. (2023) I Don’t Have a Recession in My Forecast. I Have Pretty Slow Growth. Financial Times, Nikkei Inc., London.
[8]  Turner, K., Alabi, O., Katris, A., et al. (2022) The Importance of Labour Market Responses, Competitiveness Impacts, and Revenue Recycling in Determining the Political Economy Costs of Broad Carbon Taxation in the UK. Energy Economics, 116, Article ID: 106393.
https://doi.org/10.1016/j.eneco.2022.106393
[9]  Bernanke, B.S. (2005) The Logic of Monetary Policy. Vital Speeches of the Day, 71.6, 165.
[10]  Yellen, J.L. (2009) A View of the Economic Crisis and the Federal Reserve’s Response. FRBSF Economic Letter, Federal Reserve Bank of San Francisco, San Francisco.
[11]  Keynes, J.M. (1936) The General Theory of Employment, Interest and Money. Palgrave Macmillan, London.
[12]  Stiglitz, J.E. (2002) Globalization and Its Discontents. W.W. Norton & Company, New York.
[13]  段树乔, 张正华. 疫后中国经济走向及未来GDP预测[J]. 当代经济, 2023, 40(6): 10-17.
[14]  李斌. 新冠疫情背景下中美宏观经济的影响与联动分析[D]: [硕士学位论文]. 北京: 对外经济贸易大学, 2022.
[15]  Nordhaus, W.D. and Samuelson, P.A. (2010) Economics. 19th Edition, McGraw Hill, New York.
[16]  陈国青, 曾大军, 卫强, 等. 大数据环境下的决策范式转变与使能创新[J]. 管理世界, 2020, 36(2): 95-105.
[17]  Gentleman, R. and Ihaka, R. (1996) R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5, 299-314.
https://doi.org/10.1080/10618600.1996.10474713
[18]  Stock, J.H. and Watson, M.W. (2015) Introduction to Econometrics. Pearson, Upper Saddle River.
[19]  Athey, S. (2018) The Impact of Machine Learning on Economics. In: Agrawal, A., Gans, J. and Goldfarb, A., Eds., The Economics of Artificial Intelligence: An Agenda, University of Chicago Press, Chicago, 507-552.
https://doi.org/10.7208/chicago/9780226613475.003.0021
[20]  Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.
https://doi.org/10.1023/A:1010933404324
[21]  何强. 利用混频大数据预测中国季度GDP增速研究[J]. 调研世界, 2018(7): 7-12.
[22]  James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013) An Introduction to Statistical Learning. Springer, New York.
https://doi.org/10.1007/978-1-4614-7138-7
[23]  Varian, H.R. (2014) Big Data: New Tricks for Econometrics. Journal of Economic Perspectives, 28, 3-28.
https://doi.org/10.1257/jep.28.2.3
[24]  戴雅榕. 随机森林模型能够预测中国债券违约吗? [D]: [硕士学位论文]. 厦门: 厦门大学, 2020.
[25]  Friedman, J., Hastie, T. and Tibshirani, R. (2009) The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York.
https://doi.org/10.1007/978-0-387-84858-7
[26]  Hyndman, R.J. and Athanasopoulos, G. (2018) Forecasting: Principles and Practice. OTexts, Melbourne.
[27]  Wickham, H. (2009) Ggplot2: Elegant Graphics for Data Analysis. Springer, New York.
https://doi.org/10.1007/978-0-387-98141-3
[28]  CSDN.
https://blog.csdn.net

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133