The use of entomopathogenic fungi (EF) in recent years has been highly effective against the different orders of insects considered pests of agricultural importance and their conidia have been commonly applied, but it has been reported that these are sensitive to the environmental conditions. For this reason, biopesticides products have been formulated based on secondary metabolites, recently. These biomolecules participate as biological control agent, such as: cyclic depsipeptides, amino acids, polyketides, polyphenols and terpenoids, affecting their morphology, life cycle and insect behavior. The use of secondary metabolites of entomopathogenic fungi opens the possibility of application in a more efficient way for the control of agricultural pests in a compatible with the environment and human health; therefore, it is important to know, analyzing the type of molecules, their effects, and their different methods of application.
References
[1]
Gandarilla-Pacheco, F.L., Elías-Santos, M., Del Socorro Flores-González, M., De Jesús De Luna-Santillana, E. and Quintero-Zapata., I. (2018) Virulence of Blastospores of Isariafumosorosea Native to Northeastern Mexico on Anastrephaludens (Diptera: Tephritidae). Colombian Journal of Entomology, 44, 187-192. https://doi.org/10.25100/socolen.v44i2.7316
[2]
González Baca, G., Venegas Barrera, C.S., González Gaona, O.J., Vargas Madriz, H., Jiménez Gómez, M.A., Pérez Arriaga, E. and Domínguez Azuara, A. (2019) Abundance and Distribution of Entomopathogenic Fungi in Different Locations and Environments in Southern Tamaulipas. Mexican Journal of Agricultural Sciences, 10, 669-681. https://doi.org/10.29312/remexca.v10i3.1550
[3]
Alcantara-Vargas, E., Espitia-López, J., Garza-López, P.M. and Angel-Cuapio, A. (2020) Production and Quality of Conidia of Strains of Entomopathogens of the Genus Metarhiziumanisopliae, Isolated in Agricultural Areas of the State of Mexico. Mexican Journal of Biodiversity, 91, e912912. https://doi.org/10.22201/ib.20078706e.2020.91.2912
[4]
Vara, S., Karnena, M.K., Dash, S. and Sanjana, R. (2020) Entomogenous Fungi and the Conservation of the Cultural Heritage. In: Yadav, A., Rastegari, A., Gupta, V. and Yadav, N., Eds., Microbial Biotechnology Approaches to Monuments of Cultural Heritage, Springer, Singapore, 41-69. https://doi.org/10.1007/978-981-15-3401-0_4
[5]
Cepeda-Siller, M., Garrido Cruz, F., Castro Narro, E., Sánchez Peña, S.R. and Dávila Medina, M.D. (2018) In vitro Infection of Strains of Beauveriaspp. on Globoderarostochiensis Wollenweber (1923). ActaUniversitaria, 28, 25-30. http://doi.org/10.15174/au.2018.1714
[6]
Avalos Vela, K.L. and Wilson-Kugg, J. (2015) Effect of Lecanicilliumlecanii and Beauveriabassiana on Planococcuscitriunder Laboratory Conditions. Rebiolest, 1, 63-70.
[7]
Ali, S., Ren, S. and Huang, Z. (2014) Extracellular Lipase of an Entomopathogenic Fungus Effecting Larvae of a Scale Insect. Journal of Basic Microbiology, 54, 1148-1159. https://doi.org/10.1002/jobm.201300813
[8]
Mi Woo, R., Gu Park, M., Young Choi, J., Hwan Park, D., Young Kim, J., Wang, Minghui., Ji Kim, H., Dong Woo, S., Su Kim, J. and Ho Je, Y. (2020) Insecticidal and Insect Growth Regulatory Activities of Secondary Metabolites from Entomopathogenic Fungi, Lecanicilliumattenuatum. Journal of Applied Entomology, 144, 655-663. https://doi.org/10.1111/jen.12788
[9]
Logeswaran, C., Vivekanandhan, P. and Shivakumar, M.S. (2019) Chemical Constituents of Thermal Stress Induced Ganodermaapplantum (Per.) Secondary Metabolites on Larvae of Anopheles stephensi, AedesAegypti and Culexquinquefasciatus and Histopathological Effects in Mosquito Larvae. Biocatalysis and Agricultural Biotechnology, 20, Article 101253. https://doi.org/10.1016/j.bcab.2019.101253
[10]
Cañedo, V. and Ames, T. (2004) Laboratory Manual for the Management of Entomopathogenic Fungi. 62 Editions, International Potato Center, Lima.
[11]
Sani, I., Izera Ismail, S., Abdulah, S., Jalinas, J., Jamalan, S. and Saad, N. (2020) A Review of the Biology and Control of Whitefly, Bemisiatabaci (Hemiptera: Aleyrodidae), with Special Reference to Biological Control Using Entomopathogenic Fungi. Insects, 11, Article 619. https://doi.org/10.3390/insects11090619
[12]
Keswani, C., Singh, H.B., Hermosa, R., García-Estrada, C., Caradus, J., He, Y.-W., Mezaache-Aichour, S., Glare, T.R., Borriss, R., Vinale, F. and Sansinenea, E. (2019) Antimicrobial Secondary Metabolites from Agriculturally Important Fungi as Next Biocontrol Agents. Applied Microbiology and Biotechnology, 103, 9287-9303. https://doi.org/10.1007/s00253-019-10209-2
[13]
López Rodríguez, L. and Burrola-Aguilar, C. (2019) Hongos parásitos de insectos y otros hongos: Una alternativa de alimento funcional. Agro Productividad, 12, 57-62. https://doi.org/10.32854/agrop.v0i0.1398
[14]
Sharif Swallah, M., Sun, H., Affoh, R., Fu, H. and Yu, H. (2020) Antioxidant Potential Overviews of Secondary Metabolites. International Journal of Food Science, 2020, Article ID: 9081686. https://doi.org/10.11155/2020/9081686
[15]
Villegas-Mendoza, J.M., Mireles-Martínez, M., Rodríguez-Castillejos, G.C., Santiago-Adame, R., Morales-San Claudio, P.D.C. and Rosas-García, N.M. (2019) Antimicrobial Evaluation of a Methanolic Extract of Beauveriabassiana against Pathogenic Bacteria of Nosocomial Importance. ArsPharmaceutica, 60, 169-176. https://dx.doi.org/10.30827/ars.v60i3.9219
[16]
Elbanhawy, A.A., Elsherbiny, E.A., Abd El-Mageed, A.E. and Abdel-Fattah, G.M. (2019) Potential of Fungal Metabolites as a Biocontrol Agent Against Cotton Aphid, Aphis gossypii Glover and the Possible Mechanisms of Action. Pesticide Biochemistry and Physiology, 159, 34-40. http://doi.org/10.1016/j.pestbp.2019.05.013
[17]
Oide, S. and Turgeon, B.G. (2020) Natural Roles of Nonribosomal Peptide Metabolites in Fungi. Mycoscience, 61, 101-110. https://doi.org/10.1016/j.myc.2020.03.001
[18]
Pucheta Díaz, M., Flores Macías, A., Rodríguez Navarro, S. and De La Torre, M. (2006) Mechanism of action of entomopathogenic fungi. Mecanismo de acción de los hongos entomopatógenos. Interciencia, 156, 856-860.
[19]
Wang, X., Gong, X., Li, P., Lai, D. and Zhou, L. (2017) Structural Diversity and Biological Activities of the Cyclic Dipeptides of Fungi. Molecules, 22, Article 2026. https://doi.org/10.3390/molecules22122026
[20]
Taevernier, L., Wynendaele, E., Gevaert, B. and De Spiegeleer, B. (2017) Chemical Classification of Cyclic Dipeptides. Current Protein and Peptide Science, 18, 425-452. https://doi.org/10.2174/1389203717666161128141438
[21]
Rachmawati, R., Kinoshita, H. and Nihira, T. (2018) Production of Insect Toxin Beauvericin from Entomopathogenic Fungi Cordycepsmilitaris by Heterologous Expression of Global Regulator. AGRIVITA Journal of Agricultural Science, 40, 177-184. https://doi.org/10.17503/agrivita.v40i1.1727
[22]
Vásquez-Bonilla, J.N., Cabrera-Vega, E.J., Vázquez-Olvera, J.I., Gutiérrez-Nava, M.A., Hurtado-Y De La Peña, M. and Barranco-Florido, J.E. (2017) Biological Activity of Mycotoxin Beauvericin in Cancer Cells. Actividad biológica de la micotoxina beauvericina en células cancerosas. Revista Mexicana de CienciasFarmacéuticas, 48, 17-27.
[23]
Al Khoury, C., Guillot, J. and Nemer, N. (2019) Lethal Activity of Beauvericin, a Beauveriabassiana Mycotoxin, against the Two-Spotted Spider Mites, Tetranychusurticae Koch. Journal of Applied Entomology, 143, 974-983. https://doi.org/10.1111/jen.12684
[24]
Chávez Ibañez, E., Rodríguez Navarro, S., Sánchez Pérez, L.D.C., Hamdam Partida, A. and Barranco Florido, J.E. (2014) In vitro Insecticidal Activity of Crude Extract of Beauveriabassiana (Balsam) Vuillemin on Larvae of Phyllophagaspp. (Harris). RevistaProtección Vegetal, 29, 226-230.
[25]
Stanciu, O., Juan, C., Miere, D., Loghin, F. and Mañes, J. (2017) Analysis of Enniatins and Beauvericin by LC-MS/MS in Wheat-Based Products. CyTA-Journal of Food, 15, 433-440. https://doi.org/10.1080/19476337.2017.1288661
[26]
Krížová, L., Dadáková, K., Dvorácková, M. and Kašparovský, T. (2021) Feedborne Mycotoxins Beauvericin and Enniatins and Livestock Animals. Toxins, 13, Article 32. http://doi.org/10.3390/toxins13010032
[27]
Litwin, A., Nowak, M. and Rózalska, S. (2020) Entomopathogenic Fungi: Unconventional Applications. Reviewsin Environmental Science Biotechnology, 19, 23-42. https://Doi.Org/10.1007/S11157-020-09524-1
[28]
Tuli, H.S., Sandhu, S.S. and Sharma, A.K. (2014) Pharmacological and Therapeutic Potential of Cordyceps with Special Reference to Cordycepin. 3 Biotech, 4, 1-12. http://doi.org/10.1007/s13205-013-0121-9
[29]
Wen, T.C., Long, F.Y., Kang, C., Wang, F. and Zeng, W. (2017) Effects of Additives and Bioreactors on Cordycepin Production from Cordycepsmilitaris in Liquid Static Culture. Mycosphere, 8, 886-898. http://doi.org/10.5943/mycosphere/8/7/5
[30]
Raethong, N., Wang, H., Nielsen, J. and Vongsangnak, W. (2020) Optimizing Cultivation of Cordycepsmilitaris for Fast Growth and Cordycepin Overproduction Using Rational Design of Synthetic Media. Computational and Structural Biotechnology Journal, 18, 1-8. http://doi.org/10.1016/j.csbj.2019.11.003
[31]
Nascimiento, M., Zhang, W.-W., Ghosh, A., Houston, D.R., Berghuis, A.M., Oliver, M. and Matlashewski, G. (2006) Identification and Characterization of a Protein-Tyrosine Phosphatase in Leishmania. The Journal of Biological Chemistry, 281, 36257-36268. https://doi.org/10.1074/jbc.M606256200
[32]
Zhang, L., Yue, Q., Wang, C., Xu, Y. and Molnár, I. (2020) Secondary Metabolites from Hypocrealean Entomopathogenic Fungi: Genomics as a Tool to Elucidate the Encoded Parvome. Natural Product Reports, 37, 1164-1180. https://doi.org/10.1039/D0NP00007H
[33]
Zimmermann, G. (2008) The Entomopathogenic Fungi Isariafarinosa (Formerly Paecilomycesfarinosus) and the Isariafumosorosea Species Complex (Formerly Paecilomycesfumosoroseus): Biology, Ecology and Use in Biological Control. Biocontrol Science and Technology, 18, 865-901. https://doi.org/10.1080/09583150802471812
[34]
Cheng, Y., Schneider, B., Riese, U., Schubert, B., Li, Z. and Hamburger M. (2006) ( )-N-Deoxymilitarinone A, a Neuritogenic Pyridone Alkaloid from the Insect Pathogenic Fungus Paecilomycesfarinosus. Journal of Natural Products, 69, 436-438. https://doi.org/10.1021/np050418g
[35]
Schmidt, K., Günther, W., Stoyanova, S., Schubert, B.L. and Hamburger M. (2002) Militarinone A, a Neurotrophic Pyridone Alkaloid from Paecilomycesmilitaris. Organic Letters, 4, 197-199. https://doi.org/10.1021/ol016920j
[36]
Schmidt, K., Riese, U., Li, Z. and Hamburger M. (2003) Novel Tetramic Acids and Pyridone Alkaloids, Militarinones B, C, and D, from the Insect Pathogenic Fungus Paecilomycesmilitaris. Journal of Natural Products, 66, 378-383. https://doi.org/10.1021/np020430y
[37]
Dymarska, M., Janeczko, T. and Kustrzema-Suslow, E. (2018) Glycosylation of Methoxylated Flavonoids in the Cultures ofIsariafumosorosea KCH J2. Molecules, 23, Article 2578. https://doi.org/10.3390/molecules23102578
[38]
Krawczyk-Lebek, A., Dymarska, M., Janeczko, T. and Kostrzema-Suslow, E. (2020) Entomopathogenic Filamentous Fungi as Biocatalysts in Glycosylation of Methylflavonoids. Catalysts, 10, Article 1148. https://doi.org/10.3390/catal10101148
[39]
Li, X.-Q., Xu, K., Liu, X.-M. and Zhang, P. (2020) A Systematic Review on Secondary Metabolites of Paecilomyces Species: Chemical Diversity and Biological Activity. PlantaMedica, 86, 805-821. https://doi.org/10.1055/a-1196-1906
[40]
Wu, H.-Y., Wang, Y.-L., Tan, J.-L., Zhu, C.-Y., Li, D.-X., Huang, R., Zhang, K.-Q. and Niu, X.-M. (2012) Regulation of the Growth of Cotton Bollworms by Metabolites from an Entomopathogenic Fungus Paecilomycescateniobliquus. Journal of Agricultural and Food Chemistry, 60, 5604-5608. https://doi.org/10.1021/jf302054b
[41]
Hussain, A. and Mohammed Aljabr, A. (2020) Potential Synergy between Spores of Metarhiziumanisopliae and Plant Secondary Metabolite, 1-Chlorooctadecane for Effetive Natural Acaricide Development. Molecules, 25, Article 1900. https://doi.org/10.3390/molecules25081900
[42]
Bojke, A., Tkaczuk, C., Stepnowski, P. and Gulebiowski, M. (2018) Comparison of Volatile Compounds Released by Entomopathogenic Fungi. Microbiological Research, 214, 129-136. https://doi.org/10.1016/j.micres.2018.06.011
[43]
Kirkland, B.H., Eisa, A. and Keyhani, N.O. (2005) Oxalic Acid as a Fungal Acaracidal Virulence Factor. Journal Medical Entomology, 42, 346-351. https://doi.org/10.1093/jmedent/42.3.346
[44]
Borges, D., Díaz, A.O., San Juan, A.N. and Gómez, E. (2010) Secondary Metabolites Produced by Entomopathogenic Fungi. ICIDCA about Sugar Cane Derivatives, 44, 49-55.
[45]
Gao, Y., Feng, M.-G. and Ying, S.-H. (2018) Oxaloacetate Hydrolase Gene Links the Cytoplasmic Route of Oxalate Formation to Differentiation and Virulence of Entomopathogenic Fungus Beauveriabassiana. Journal of Asia-Pacific Entomology, 21, 211-216. https://doi.org/10.1016/j.aspen.2017.12.003
[46]
Asaff, A., Cerda-García-Rojas, C. and De La Torre, M. (2005) Isolation of Dipicolinic Acid as an Insecticidal Toxin from Paecilomycesfumosoroseus. Applied Microbiology and Biotechnology, 68, 542-547. https://doi.org/10.1007/s00253-005-1909-2
[47]
Luo, Z., Ren, H., Mousa, J.J., Rangel, D.E.N., Zhang, Y., et al. (2017) The PacC Transcription Factor Regulates Secondary Metabolite Production and Stress Response, but Has Only Minor Effects on Virulence in the Insect Pathogenic Fungus Beauveriabassiana. Environmental Microbiology, 19, 788-802. https://doi.org/10.1111/1462-2920.13648
[48]
De Souza Daniel, J.F., Vinícius Scalco, A., De Souza, R.M., Marins Ocampos, F.M., Barison, A., Angeli Alves, L.F. and Oliveira Janeiro Neves, P.M. (2018) Susceptibly of Alphitobius diaperinus to Beauveria bassiana Extracts. Natural Product Research, 33, 3033-3036. https://doi.org/10.1080/14786419.2018.1514396
[49]
Xiao, G., Ying, S.-H., Zheng, P., Wang, Z.-L., Zhang, S., Xie, X.-Q., Shang, Y., Leger, R.J.S., Zhao, G.-D., Wang, C. and Feng, M.-G. (2012) Genomic Perspectives on the Evolution of Fungal Entomopathogenicity in Beauveriabassiana. Scientific Reports, 2, Article No. 483. https://doi.org/10.1038/srep00483
[50]
Cho, E.-M., Drion, B. and Keyhani, N.O. (2006) EST Analysis of cDNA Libraries from the Entomopathogenic Fungus Beauveria (Cordyceps) bassiana. II. Fungal Cells Sporulating on Chitin and Producing Oosporein. Microbiology, 152, 2855-2864. https://doi.org/10.1099/mic.0.28845-0
[51]
Namara, L.M., Dolan, S.K., Walsh, J.M.D., Stephens, J.C., Glare, T.R., Kavanagh, K. and Griffin, C.T. (2019) Oosporein, an Abundant Metabolite in Beauveriacaledonica, with a Feedback Induction Mechanism and a Role in Insect Virulence. Fungal Biology, 123, 601-610. https://doi.org/10.1016/j.funbio.2019.01.004
[52]
De Carolina Sánchez-Pérez, L., Barranco-Florido, J.E., Rodríguez-Navarro, S., Cervantes-Mayagoitia, J.F. and Ramos-López, M.A. (2014) Entomopathogenic Fungal Enzymes, Advances and Knowledge. Advances in Enzyme Research, 2, 65-76. https://doi.org/10.4236/aer.2014.22007
[53]
Tellez-Jurado, A., Cruz Ramírez, M.G., Mercado Flores, Y., Asaff Torres, A. and Arana-Cuenca, A. (2009) Mechanisms of Action and Response in the Relationship between Entomopathogenic Fungi and Insects. Revista Mexicana de Micología, 30, 73-80.
[54]
Nowak, M., Bernat, P., Mrozinska, J. and Rózalska, S. (2020) Acetamiprid Affects Dextruxins Production but Its Accumulation in Metarhiziumsp. Spores Increases Infection Ability of Fungi. Toxins, 12, Article 587. https://doi.org/10.3390/toxins12090587
[55]
Kato, T., Nishimura, K., Suparmin, A., Ikeo, K. and Park, E.Y. (2021) Effects of Cordycepin in Cordycepsmilitaris during Its Infection to Silkworm Larvae. Microorganisms, 9, Article 681. https://doi.org/10.3390/microorganisms9040681
[56]
Patocka, J. (2016) Bioactive Metabolites of Entomopathogenic Fungi Beauveriabassiana. Military Medical Science Letters, 85, 80-88. https://doi.org/10.31482/mmsl.2016.015
[57]
Da Silva Santos, A.C., Gonvalves Diniz, A., Viera Tiago, P. and De Oliveira, N.T. (2019) Entomopathogenic Fusarium Species: A Review of Their Potential for the Biological Control of Insects, Implications and Prospects. Fungal Biology Reviews, 34, 41-57. https://doi.org/10.1016/j.fbr.2019.12.002
[58]
Vivekanandhan, P., Swathy, K., Kalaimurugan, D., Ramachandran, M., Yuvaraj, A., Kumar, A.N., Shivakumar, M.S., Kweka, E.J., et al. (2020) Larvicidal Toxicity of Metarhiziumanisopliae Metabolites against Three Mosquito Species and Non-Targeting Organisms. PLOS ONE, 15, e0232172. https://doi.org/10.1371/journal.pone.0232172
[59]
Marín-Cruz, V.H., Rodríguez-Navarro, S., Barranco-Florido J.E. and Cibrián-Továr, D. (2017) Insectistatic and Insecticide Activity of Beauveriabassiana in Bradysia impatiens (Diptera: Sciaridae). RevistaChapingoSerieCienciasForestales y delAmbiente, 23, 329-340. https://doi.org/10.5154/r.rchscfa.2016.10.053
[60]
Vivekanandhan, P., Karthi, S., Shivakumar, M.S. and Benelli, G. (2018) Synergistic Effect of Entomopathogenic Fungus Fusariumoxysporum Extract in Combination with Temephos against Three Major Mosquito Vectors. Pathogens and Global Health, 112, 37-46. https://doi.org/10.1080/20477724.2018.1438228
[61]
Sharapova, I.E. (2019) Prospects of Using Entomopathogenic Fungus in Development of a Biopesticide Product with Nematicidal Activity. BiocatalysisandAgricultural Biotechnology, 19, Article 101098. https://doi.org/10.1016/j.bcab.2019.101098
[62]
Zhang, X., Hu, Q. and Weng, Q. (2019) Secondary Metabolites (SMs) of Isaria cicadae and Isariatenuipes. RSC Advances, 9, 172-184. https://doi.org/10.1039/C8RA09039D
[63]
Dai, Z.-B., Wang, X. and Li, G.-H. (2020) Secondary Metabolites and Their Bioactivities Produced by Paecilomyces. Molecules, 25, Article 5077. https://doi.org/10.3390/molecules25215077
[64]
El-Ghany, T.M., El-Sheikh, H.H., El-Rahman G.A. and El-Nasser A.M. (2012) Biodiversity of Entomopathogenic Fungi in New Cultivated Soils with Their Use for the Control of Galleria mellonella. International Journal of Research and Review, 4, 17-31.
[65]
Rosas-García, N.M., Mireles-Martínez, M. and Villegas-Mendoza, J.M. (2020) Detection of Bassianolide and Beauvericin in Strains of Beauveriabassiana and Their Participation in the Pathogenic Activity towards Spodoptera sp. Biotecnia, 22, 93-99. https://doi.org/10.18633/biotecnia.v2213.1060
[66]
Abd-ElAzeem, E.M., El-Medany, W.A.Z. and Sabry, H.M. (2019) Biological Activities of Spores and Metabolites of Some Fungal Isolates on Certain Aspects of the Spiny Bollworms Eariasinsulana (Lepidoptera: Noctuidae). Egyptian Journal of Biological Pest Control, 29, Article No. 90. https://doi.org/10.186/s41938-019-0192-y
[67]
Erol, A.B., Abdelaziz, O., Birgücü, A.K., Morad, M., Oufroukh, A. and Karaca, I. (2020) Effects of Some Entomopathogenic Fungi on the Aphid Species, Aphis gossypii Glover (Hemiptera: Aphididae). Egyptian Journal of Biological Pest Control, 30, Article 108. https://doi.org/10.1186/s41938-020-00311-3
[68]
Han, J.H., Jin, B.R., Kim, J.J. and Lee, S.Y. (2014) Virulence of Entomopathogenic Fungi Metarhiziumanisopliae and Paecilomycesfumosoroseus for the Microbial Control of Spodopteraexigua. Mycobiology, 42, 385-390. https://doi.org/10.5941/MYCO.2014.42.4.385
[69]
Lozano-Tovar, M.D., Ortiz-Urquiza, A., Garrido-Jurado, I., Trapero-Casas, A. and Quesada-Moraga, E. (2013) Assessment of Entomopathogenic Fungi and Their Extracts against a Soil-Dwelling Pest and Soil-Borne Pathogens of Olive. Biological Control, 67, 409-420. https://doi.org/10.1016/j.biocontrol.2013.09.006
[70]
Espinoza, F., Vidal, S., Rautenbach, F., Lewu, F. and Nchu, F. (2019) Effects of Beauveriabassiana (Hypocreales) on Plant Growth and Secondary Metabolites of Extracts of Hydroponically Cultivated Chive (Alliumschoenoprasum L. [Amaryllidaceae]). Heliyon, 5, E03038. https://doi.org/10.1016/j.heliyon.2019.e03038
[71]
Weng, Q., Zhang, X., Chen, W. and Hu, Q. (2019) Secondary Metabolites and the Risks of Isariafumosorosea and Isaria farinose. Molecules, 24, Article 664. https://doi.org/10.3390/molecules24040664
[72]
Wang, H., Peng, H., Li, W., Cheng, P. and Gong, M. (2021) The Toxins of Beauveriabassiana and the Strategies to Improve Their Virulence to Insects. Frontiers in Microbiology, 12, Article 705343. https://doi.org/10.3389/fmicb.2021.705343
[73]
Hugo, V.M.-C., Navarro, S.R., Florido, J.E.B., Sierra, R.T. and Tovar, D.C. (2018) Metabolites and Conidia of Beauveriabassiana for Control of a Darwinged Fungus Gnat under Greenhouse Conditions. Southwestern Entomologist, 43, 691-703. https://doi.org/10.3958/059.043.0315