全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Flood Risk Assessment in the Lower Valley of Ouémé, Benin

DOI: 10.4236/ojmh.2024.142008, PP. 130-151

Keywords: Flood, Hazard, Exposure, Vulnerability, Risk, Lower Valley of Ouémé

Full-Text   Cite this paper   Add to My Lib

Abstract:

In response to the increased frequency of flood events in recent years, it has become crucial to enhance preparedness and anticipation through precise flood risk assessments. To this end, this study aims to produce updated and precise flood risk maps for the Lower Valley of Ouémé River Basin, located in the South of Benin. The methodology used consisted of a combination of geographical information systems (GIS) and multi-criteria analysis, including Analytical Hierarchy Process (AHP) methods to define and quantify criteria for flood risk assessment. Seven hydro-geomorphological indicators (elevation, rainfall, slope, distance from rivers, flow accumulation, soil type, and drainage density), four socio-economic vulnerability indicators (female population density, literacy rate, poverty index, and road network density), and two exposure indicators (population density and land use) were integrated to generate risk maps. The results indicate that approximately 21.5% of the Lower Valley is under high and very high flood risk, mainly in the south between Dangbo, So-Ava, and Aguégués. The study findings align with the historical flood pattern in the region, which confirms the suitability of the used method. The novelty of this work lies in its comprehensive approach, the incorporation of AHP for weighting factors, and the use of remote sensing data, GIS technology, and spatial analysis techniques which adds precision to the mapping process. This work advances the scientific understanding of flood risk assessment and offers practical insights and solutions for flood-prone regions. The detailed flood risk indicator maps obtained stand out from previous studies and provide valuable information for effective flood risk management and mitigation efforts in the Lower Valley of Ouémé.

References

[1]  Pulvirenti, L., Pierdicca, N., Chini, M. and Guerriero, L. (2011) An Algorithm for Operational Flood Mapping from Synthetic Aperture Radar (SAR) Data Using Fuzzy Logic. Natural Hazards and Earth System Sciences, 11, 529-540.
https://doi.org/10.5194/nhess-11-529-2011
[2]  Afrique de l’Ouest: Inondations 2009 Rapport de Situation No. 3-21 Sep. 2009—Burkina Faso. ReliefWeb.
https://reliefweb.int/report/burkina-faso/afrique-de-louest-inondations-2009-
rapport-de-situation-no-3-21-sep-2009
[3]  Benin—Inondations Au Benin: Rapport d’evaluation Des Besoins Post-Catastrophe.
https://documents.banquemondiale.org/fr/publication/documents-reports/documentdetail/
750141468208769683/Benin-Inondations-au-Benin-rapport-devaluation-des-besoins-post-catastrophe
[4]  Chikou, A. (2007) Etude de La Démographie et de l’exploitation Halieutique de Six Espèces de Poissons-Chats (Teleostei, Siluriformes) Dans Le Delta de l’Ouémé Au Bénin.
[5]  Mudashiru, R.B., Sabtu, N., Abustan, I. and Balogun, W. (2021) Flood Hazard Mapping Methods: A Review. Journal of Hydrology, 603, Article ID: 126846.
https://doi.org/10.1016/j.jhydrol.2021.126846
[6]  Balica, S.F., Popescu, I., Beevers, L. and Wright, N.G. (2013) Parametric and Physically Based Modelling Techniques for Flood Risk and Vulnerability Assessment: A Comparison. Environmental Modelling & Software, 41, 84-92.
https://doi.org/10.1016/j.envsoft.2012.11.002
[7]  Ji, J., Choi, C., Yu, M. and Yi, J. (2012) Comparison of a Data-Driven Model and a Physical Model for Flood Forecasting. WIT Transactions on Ecology and the Environment, 159, 133-142.
https://doi.org/10.2495/FRIAR120111
[8]  Chakraborty, S. and Mukhopadhyay, S. (2019) Assessing Flood Risk Using Analytical Hierarchy Process (AHP) and Geographical Information System (GIS): Application in Coochbehar District of West Bengal, India. Natural Hazards, 99, 247-274.
https://doi.org/10.1007/s11069-019-03737-7
[9]  Danumah, J.H., Odai, S.N., Saley, B.M., Szarzynski, J., Thiel, M., Kwaku, A., Kouame, F.K. and Akpa, L.Y. (2016) Flood Risk Assessment and Mapping in Abidjan District Using Multi-Criteria Analysis (AHP) Model and Geoinformation Techniques, (Cote d’Ivoire). Geoenvironmental Disasters, 3, Article No. 10.
https://doi.org/10.1186/s40677-016-0044-y
[10]  Costache, R. (2019) Flood Susceptibility Assessment by Using Bivariate Statistics and Machine Learning Models—A Useful Tool for Flood Risk Management. Water Resources Management, 33, 3239-3256.
https://doi.org/10.1007/s11269-019-02301-z
[11]  Eini, M., Kaboli, H.S., Rashidian, M. and Hedayat, H. (2020) Hazard and Vulnerability in Urban Flood Risk Mapping: Machine Learning Techniques and Considering the Role of Urban Districts. International Journal of Disaster Risk Reduction, 50, Article ID: 101687.
https://doi.org/10.1016/j.ijdrr.2020.101687
[12]  Mahmoud, S.H. and Gan, T.Y. (2018) Multi-Criteria Approach to Develop Flood Susceptibility Maps in Arid Regions of Middle East. Journal of Cleaner Production, 196, 216-229.
https://doi.org/10.1016/j.jclepro.2018.06.047
[13]  Saaty, T.L. (1990) How to Make a Decision: The Analytic Hierarchy Process. European Journal of Operational Research, 48, 9-26.
https://doi.org/10.1016/0377-2217(90)90057-I
[14]  Papaioannou, G., Vasiliades, L. and Loukas, A. (2015) Multi-Criteria Analysis Framework for Potential Flood Prone Areas Mapping. Water Resources Management, 29, 399-418.
https://doi.org/10.1007/s11269-014-0817-6
[15]  Dossou-Bodjrènou, J., Chabi-Yaouré, F. and Zannou, J. (2006) Plan d’action Stratégique Pour La Gestion Rationnelle et Communautaire Des Ressources Biologiques et Des Écosystèmes Des Sites et Des Couloirs de Migration Du Lamantin d’Afrique de l’Ouest Dans Les Zones Humides Du Sud-Bénin. Nature Tropicale Benin.
[16]  Pélissier, P. (1962) Les Pays Du Bas-Ouémé: Une Région Témoin Du Dahomey Méridional. Les Cahiers d’outre-mer, 15, 204-245.
https://doi.org/10.3406/caoum.1962.2254
[17]  Alliance, D. (2020) Report of the Ouémé Delta Status and Trends.
[18]  Earth Resources Observation and Science (EROS) Center Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global 2017.
[19]  INStaD—Statistiques Démographiques.
https://instad.bj/statistiques/statistiques-demographiques
[20]  FAO/UNESCO Soil Map of the World. FAO Soils Portal. Food and Agriculture Organization of the United Nations.
https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
[21]  ArcGIS—Sentinel-2 10m Land Use/Land Cover Time Series.
https://www.arcgis.com/home/webmap/viewer.html?layers=cfcb7609de5f478eb7666240902d4d3d
[22]  Boundaries and Streams.
https://www.geobenin.bj/carto/www/
[23]  Benin Data Portal Literacy Rate and Poverty Index.
https://benin.opendataforafrica.org/
[24]  Ntajal, J., Lamptey, B.L., Mahamadou, I.B. and Nyarko, B.K. (2017) Flood Disaster Risk Mapping in the Lower Mono River Basin in Togo, West Africa. International Journal of Disaster Risk Reduction, 23, 93-103.
https://doi.org/10.1016/j.ijdrr.2017.03.015
[25]  Tehrany, M.S., Lee, M.-J., Pradhan, B., Jebur, M.N. and Lee, S. (2014) Flood Susceptibility Mapping Using Integrated Bivariate and Multivariate Statistical Models. Environmental Earth Sciences, 72, 4001-4015.
https://doi.org/10.1007/s12665-014-3289-3
[26]  Rahmati, O., Zeinivand, H. and Besharat, M. (2016) Flood Hazard Zoning in Yasooj Region, Iran, Using GIS and Multi-Criteria Decision Analysis. Geomatics, Natural Hazards and Risk, 7, 1000-1017.
https://doi.org/10.1080/19475705.2015.1045043
[27]  Mishra, K. and Sinha, R. (2020) Flood Risk Assessment in the Kosi Megafan Using Multi-Criteria Decision Analysis: A Hydro-Geomorphic Approach. Geomorphology, 350, Article ID: 106861.
https://doi.org/10.1016/j.geomorph.2019.106861
[28]  Tariq, A., Yan, J., Ghaffar, B., Qin, S., Mousa, B.G., Sharifi, A., Huq, M.E. and Aslam, M. (2022) Flash Flood Susceptibility Assessment and Zonation by Integrating Analytic Hierarchy Process and Frequency Ratio Model with Diverse Spatial Data. Water, 14, Article No. 3069.
https://doi.org/10.3390/w14193069
[29]  Chen, Y. (2022) Flood Hazard Zone Mapping Incorporating Geographic Information System (GIS) and Multi-Criteria Analysis (MCA) Techniques. Journal of Hydrology, 612, Article ID: 128268.
https://doi.org/10.1016/j.jhydrol.2022.128268
[30]  Hu, S., Cheng, X., Zhou, D. and Zhang, H. (2017) GIS-Based Flood Risk Assessment in Suburban Areas: A Case Study of the Fangshan District, Beijing. Natural Hazards, 87, 1525-1543.
https://doi.org/10.1007/s11069-017-2828-0
[31]  Adger, W.N. (2006) Vulnerability. Global Environmental Change, 16, 268-281.
https://doi.org/10.1016/j.gloenvcha.2006.02.006
[32]  Shivaprasad Sharma, S.V., Roy, P.S., Chakravarthi, V. and Srinivasa Rao, G. (2018) Flood Risk Assessment Using Multi-Criteria Analysis: A Case Study from Kopili River Basin, Assam, India. Geomatics, Natural Hazards and Risk, 9, 79-93.
https://doi.org/10.1080/19475705.2017.1408705
[33]  Rehman, S., Sahana, M., Hong, H., Sajjad, H. and Ahmed, B.B. (2019) A Systematic Review on Approaches and Methods Used for Flood Vulnerability Assessment: Framework for Future Research. Natural Hazards, 96, 975-998.
https://doi.org/10.1007/s11069-018-03567-z
[34]  BPMSG—Business Performance Management Singapore.
[35]  Saaty, T.L. (2008) Decision Making with the Analytic Hierarchy Process. International Journal of Services Sciences, 1, 83-98.
https://doi.org/10.1504/IJSSCI.2008.017590
[36]  Radwan, F., Alazba, A.A. and Mossad, A. (2019) Flood Risk Assessment and Mapping Using AHP in Arid and Semiarid Regions. Acta Geophysica, 67, 215-229.
https://doi.org/10.1007/s11600-018-0233-z
[37]  Saaty, T. (1980) The Analytic Hierarchy Process (AHP) for Decision Making. Proceedings of the Kobe, Vol. 1, 69.
[38]  Bankoff, G., Frerks, G., Hilhorst, T. and Hilhorst, D. (2004) Mapping Vulnerability: Disasters, Development, and People. Routledge, London.
[39]  The Global Competitiveness Report 2011-2012. The Global Competitiveness Report 2011.
[40]  Birkmann, J., Cardona, O.D., Carreño, M.L., Barbat, A.H., Pelling, M., Schneiderbauer, S., Kienberger, S., Keiler, M., Alexander, D. and Zeil, P. (2013) Framing Vulnerability, Risk and Societal Responses: The MOVE Framework. Natural Hazards, 67, 193-211.
https://doi.org/10.1007/s11069-013-0558-5
[41]  Brivio, P.A., Colombo, R., Maggi, M. and Tomasoni, R. (2002) Integration of Remote Sensing Data and GIS for Accurate Mapping of Flooded Areas. International Journal of Remote Sensing, 23, 429-441.
https://doi.org/10.1080/01431160010014729
[42]  Tingsanchali, T. (2012) Urban Flood Disaster Management. Procedia Engineering, 32, 25-37.
https://doi.org/10.1016/j.proeng.2012.01.1233
[43]  Nasiri, H., Mohd Yusof, M.J. and Mohammad Ali, T.A. (2016) An Overview to Flood Vulnerability Assessment Methods. Sustainable Water Resources Management, 2, 331-336.
https://doi.org/10.1007/s40899-016-0051-x
[44]  Khunwishit, S., Choosuk, C. and Webb, G. (2018) Flood Resilience Building in Thailand: Assessing Progress and the Effect of Leadership. International Journal of Disaster Risk Science, 9, 44-54.
https://doi.org/10.1007/s13753-018-0162-0
[45]  Kang, S.-J., Lee, S.-J. and Lee, K.-H. (2009) A Study on the Implementation of Non-Structural Measures to Reduce Urban Flood Damage-Focused on the Survey Results of the Experts. Journal of Asian Architecture and Building Engineering, 8, 385-392.
https://doi.org/10.3130/jaabe.8.385

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133