The energy norm convergence rate of the finite element solution of the heat equation is reduced by the time-regularity of the exact solution. This paper presents an adaptive finite element treatment of time-dependent singularities on the one-dimensional heat equation. The method is based on a Fourier decomposition of the solution and an extraction formula of the coefficients of the singularities coupled with a predictor-corrector algorithm. The method recovers the optimal convergence rate of the finite element method on a quasi-uniform mesh refinement. Numerical results are carried out to show the efficiency of the method.
References
[1]
Fletcher, C. (1988) Computational Techniques for Fluid Dynamics. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-97071-9
[2]
Maturi, D., Alsulami, N. and Alaidarous, E. (2020) Finite Difference Approximation for Solving Transient Heat Conduction Equation of Copper. Advances in Pure Mathematics, 10, 350-358. https://doi.org/10.4236/apm.2020.105021
[3]
Ali, M., Loskor, W., Taher, S. and Bilkis, F. (2022) Solution of a One-Dimension Heat Equation Using Higher-Order Finite Difference Methods and Their Stability. Journal of Applied Mathematics and Physics, 10, 877-886. https://doi.org/10.4236/jamp.2022.103060
[4]
Thomée, V. (2006) Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin.
[5]
Jung, M. and Langer, U. (2013) Methode der Finiten Elemente für Ingenieure. Springer Science Business Media, Wiesbaden. https://doi.org/10.1007/978-3-658-01101-7
[6]
Dautray, R. and Lions, J.-L. (1999) Mathematical Analysis and Numerical Methods for Science and Technology: Evolution Problems II. Vol. 6, Springer-Verlag, Berlin.
[7]
Steinbach, O. (2015) Space-Time Finite Element Methods for Parabolic Problems. Computational Methods in Applied Mathematics, 15, 551-566. https://doi.org/10.1515/cmam-2015-0026
[8]
Schwab, C. and Stevenson, R. (2009) Space-Time Adaptive Wavelet Methods for Parabolic Evolution Problems. Mathematics of Computation, 78, 1293-1318. https://doi.org/10.1090/S0025-5718-08-02205-9
[9]
Neumüller, M. (2013) Space-Time Methods: Fast Solvers and Applications. Ph.D. Thesis, Graz University of Technology, Graz.
[10]
Mollet, C. (2014) Stability of Petrov-Galerkin Discretizations: Application to the Space-Time Weak Formulation for Parabolic Evolution Problems. Computational Methods in Applied Mathematics, 14, 231-255. https://doi.org/10.1515/cmam-2014-0001
[11]
Gander, J. and Neumller, M. (2014) Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems. arXiv: 1411.0519. http://arxiv.org/abs/1411.0519
[12]
Hughes, T. and Hulbert, G. (1988) Space-Time Finite Element Methods for Elastodynamics: Formulations and Error Estimates. Computer Methods in Applied Mechanics and Engineering, 66, 339-363. https://doi.org/10.1016/0045-7825(88)90006-0
[13]
Hazard, C. and Lenoir, M. (1996) On the Solution of Time-Harmonic Scattering Problems for Maxwell’s Equations. SIAM Journal of Mathematical Analysis, 27, 1597-1630. https://doi.org/10.1137/S0036141094271259
[14]
Bonnet-Ben Dhia, A., Hazard, C. and Lorenghel, S. (1999) A Singular Field Method for the Solution of Maxwell’s Equations in Polyhedral Domains. SIAM Journal of Applied Mathematics, 59, 2028-2044. https://doi.org/10.1137/S0036139997323383
[15]
Hazard, C. and Lorenghel, S. (2002) A Singular Field Method for the Solution of Maxwell’s Equations: Numerical Aspects for 2D Magnetostatics. SIAM Journal of Applied Mathematics, 40, 1021-1040. https://doi.org/10.1137/S0036142900375761
[16]
Assous, F., Ciarlet, P., Labrunie, S. and Lorenghel, S. (2001) The Singular Complement Method. In: Debit, N., Garbey, M., Hoppe, R., Périaux, J., Keyes, D. and Kuznetsov, Y., Eds., Thirteenth International Conference on Domain Decomposition Methods, Institut Elie Cartan, Villers-lès-Nancy, 159-187.
[17]
Nkemzi, B. and Jung, M. (2013) A Postprocessing Finite Element Strategy for Poisson’s Equation in Polygonal Domains: Computing the Stress Intensity Factors. In: Apel, T. and Steinbach, O., Eds., Advanced Finite Element Methods and Applications, Springer, Berlin, 153-173. https://doi.org/10.1007/978-3-642-30316-6_7
[18]
Nkemzi, B. (2006) On the Solution of Maxwell’s Equations in Polygonal Domains. Mathematical Methods in Applied Science, 29, 1053-1080. https://doi.org/10.1002/mma.717
[19]
Nkemzi, B. (2007) On Singularities of Solution of Maxwell’s Equations in Axisymmetric Domains with Conical Points. Mathematical Methods in Applied Science,30, 877-888. https://doi.org/10.1002/mma.812
[20]
Nkemzi, B. (2005) On the Solution of Maxwell’s Equations in Axisymmetric Domains with Edges. Zeitschrift für Angewandte Mathematik und Mechanik, 85, 570-592. https://doi.org/10.1002/zamm.200310188
[21]
Nkemzi, B. (2016) On the Coefficients of the Singularities of the Solution of Maxwell’s Equations near Polyhedral Edges. Mathematical Problems in Engineering, 2016, Article ID: 7965642. https://doi.org/10.1155/2016/7965642
[22]
Nkemzi, B. and Tanekou, S. (2018) Predictor-Corrector p-and hp-Versions of the Finite Element Method for Poisson’s Equation in Polygonal Domains. Computer Methods in Applied Mechanics and Engineering, 333, 74-93. https://doi.org/10.1016/j.cma.2018.01.027
[23]
Nkemzi, B. and Nkeck, J. (2020) A Predictor-Corrector Finite Element Method for Maxwell’s Equations in Polygonal Domains. Mathematical Problems in Engineering, 2020, Article ID: 3502513. https://doi.org/10.1155/2020/3502513
[24]
Nkemzi, B. and Jung, M. (2023) The Coefficients in the Asymptotic Expansion of Solutions of Second-Order Hyperbolic Problems in Polygonal Domains. Mathematical Problems in Engineering, 46, 9576-9588. https://doi.org/10.1002/mma.9075
[25]
Nkeck, J. (2024) A Crank-Nicolson Finite Element Treatment of Time-Dependent Singularities of the One Dimensional Heat Equation. https://doi.org/10.21203/rs.3.rs-3989135/v1
[26]
Renardy, M. and Rogers, R. (2004) An Introduction to Artial Differential Equations. 2nd Edition, Springer-Verlag, New York.
[27]
Adams, R. (1975) Sobolev Spaces. Academic Press, New York.
[28]
Jackson, D. (1930) The Theory of Approximation. Vol. XI, AMS Colloquium Publication, New York.