In this paper, we propose the nonconforming virtual element method (NCVEM) discretization for the pointwise control constraint optimal control problem governed by elliptic equations. Based on the NCVEM approximation of state equation and the variational discretization of control variables, we construct a virtual element discrete scheme. For the state, adjoint state and control variable, we obtain the corresponding prior estimate in H1 and L2 norms. Finally, some numerical experiments are carried out to support the theoretical results.
References
[1]
Casas, E. (1986) Control of an Elliptic Problem with Pointwise State Constraints. SIAM Journal on Control and Optimization, 24, 1309-1318. https://doi.org/10.1137/0324078
[2]
Lu, Z. and Chen, Y. (2009) L∞-Error Estimates of Triangular Mixed Finite Element Methods for Optimal Control Problems Governed by Semilinear Elliptic Equations. Numerical Analysis and Applications, 2, 74-86. https://doi.org/10.1134/S1995423909010078
[3]
Liu, W., Ma, H., Tang, T. and Yan, N. (2004) A Posteriori Error Estimates for Discontinuous Galerkin Timestepping Method for Optimal Control Problems Governed by Parabolic Equations. SIAM Journal on Numerical Analysis, 42, 1032-1061. https://doi.org/10.1137/S0036142902397090
[4]
Chen, Y. and Huang, F. (2016) Galerkin Spectral Approximation of Elliptic Optimal Control Problems with H1-Norm State Constraint. Journal of Scientific Computing, 67, 65-83. https://doi.org/10.1007/s10915-015-0071-y
[5]
Casas, E. and Tröltzsch, F. (2002) Error Estimates for the Finite-Element Approximation of a Semilinear Elliptic Control Problem. Control and Cybernetics, 31, 695-712.
[6]
Merino, P., Tröltzsch, F. and Vexler, B. (2010) Error Estimates for the Finite Element Approximation of a Semilinear Elliptic Control Problem with State Constraints and Finite Dimensional Control Space. ESAIM: Mathematical Modelling and Numerical Analysis, 44, 167-188. https://doi.org/10.1051/m2an/2009045
[7]
Casas, E. and Raymond, J.-P. (2006) Error Estimates for the Numerical Approximation of Dirichlet Boundary Control for Semilinear Elliptic Equations. SIAM Journal on Control and Optimization, 45, 1586-1611. https://doi.org/10.1137/050626600
[8]
Hinze, M. (2005) A Variational Discretization Concept in Control Constrained Optimization: The Linearquadratic Case. Computational Optimization and Applications, 30, 45-61. https://doi.org/10.1007/s10589-005-4559-5
[9]
Liu W. and Yan, N. (2001) A Posteriori Error Estimates for Distributed Convex Optimal Control Problems. Advances in Computational Mathematics, 15, 285-309. https://doi.org/10.1023/A:1014239012739
[10]
Liu, W. and Yan, N. (2002) A Posteriori Error Estimates for Control Problems Governed by Stokes Equations. SIAM Journal on Numerical Analysis, 40, 1850-1869. https://doi.org/10.1137/S0036142901384009
[11]
Liu, W. and Yan, N. (2003) A Posteriori Error Estimates for Optimal Control Problems Governed by Parabolic Equations. Numerische Mathematik, 93, 497-521. https://doi.org/10.1007/s002110100380
[12]
Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D. and Russo, A. (2013) Basic Principles of Virtual Element Methods. Mathematical Models and Methods in Applied Sciences, 23, 199-214. https://doi.org/10.1142/S0218202512500492
[13]
Da Veiga, L.B., Lovadina, C. and Mora, D. (2015) A Virtual Element Method for Elastic and Inelastic Problems on Polytope Meshes. Computer Methods in Applied Mechanics and Engineering, 295, 327-346. https://doi.org/10.1016/j.cma.2015.07.013
[14]
Chen L. and Wang, F. (2019) A Divergence Free Weak Virtual Element Method for the Stokes Problem on Polytopal Meshes. Journal of Scientific Computing, 78, 864-886. https://doi.org/10.1007/s10915-018-0796-5
[15]
Gatica, G.N., Munar, M. and Sequeira, F.A. (2018) A Mixed Virtual Element Method for the Navier-Stokes Equations. Mathematical Models and Methods in Applied Sciences, 28, 2719-2762. https://doi.org/10.1142/S0218202518500598
[16]
Antonietti, P.F., Da Veiga, L.B., Scacchi, S. and Verani, M. (2016) A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes. SIAM Journal on Numerical Analysis, 54, 34-56. https://doi.org/10.1137/15M1008117
[17]
de Dios, B.A., Lipnikov, K. and Manzini, G. (2016) The Nonconforming Virtual Element Method. ESAIM: Mathematical Modelling and Numerical Analysis, 50, 879-904. https://doi.org/10.1051/m2an/2015090
[18]
Cangiani, A., Manzini, G. and Sutton, O.J. (2017) Conforming and Nonconforming Virtual Element Methods for Elliptic Problems. IMA Journal of Numerical Analysis, 37, 1317-1354. https://doi.org/10.1093/imanum/drw036
[19]
Liu, X. and Chen, Z. (2019) The Nonconforming Virtual Element Method for the Navier-Stokes Equations. Advances in Computational Mathematics, 45, 51-74. https://doi.org/10.1007/s10444-018-9602-z
[20]
Antonietti, P.F., Manzini, G. and Verani, M. (2018) The Fully Nonconforming Virtual Element Method for Biharmonic Problems. Mathematical Models and Methods in Applied Sciences, 28, 387-407. https://doi.org/10.1142/S0218202518500100
[21]
Zhang, B., Zhao, J., Yang, Y. and Chen, S. (2019) The Nonconforming Virtual Element Method for Elasticity Problems. Journal of Computational Physics, 378, 394-410. https://doi.org/10.1016/j.jcp.2018.11.004
[22]
Gardini, F., Manzini, G. and Vacca, G. (2019) The Nonconforming Virtual Element Method for Eigenvalue Problems. ESAIM: Mathematical Modelling and Numerical Analysis, 53, 749-774. https://doi.org/10.1051/m2an/2018074
[23]
Xiao, L., Zhou, M. and Zhao, J. (2022) The Nonconforming Virtual Element Method for Semilinear Elliptic Problems. Applied Mathematics and Computation, 433, Article 127402. https://doi.org/10.1016/j.amc.2022.127402
[24]
Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D. and Russo, A. (2013) Equivalent Projectors for Virtual Element Methods. Computers & Mathematics with Applications, 66, 376-391. https://doi.org/10.1016/j.camwa.2013.05.015
[25]
Becker, R., Kapp, H. and Rannacher, R. (2000) Adaptive Finite Element Methods for Optimal Control of Partial Differential Equations: Basic Concept. SIAM Journal on Control and Optimization, 39, 113-132. https://doi.org/10.1137/S0363012999351097
[26]
Brenner, S.C. and Scott, L.R. (2008) The Mathematical Theory of Finite Element Methods. Springer, New York. https://doi.org/10.1007/978-0-387-75934-0
[27]
Wang, Q. and Zhou, Z. (2022) A Priori and a Posteriori Error Analysis for Virtual Element Discretization of Elliptic Optimal Control Problem. Numerical Algorithms, 90, 989-1015. https://doi.org/10.1007/s11075-021-01219-1
[28]
Beirão da Veiga, L., Brezzi, F., Marini, L.D. and Russo, A. (2016) Virtual Element Method for General Second-Order Elliptic Problems on Polygonal Meshes. Mathematical Models and Methods in Applied Sciences, 26, 729-750. https://doi.org/10.1142/S0218202516500160
[29]
Talischi, C., Paulino, G.H., Pereira, A. and Menezes, I.F. (2012) Polymesher: A General-Purpose Mesh Generator for Polygonal Elements Written in Matlab. Structural and Multidisciplinary Optimization, 45, 309-328. https://doi.org/10.1007/s00158-011-0706-z