|
RP-3航空煤油裂解台架搭建及实验分析
|
Abstract:
本文设计并搭建了一套用于探究航空煤油RP-3裂解结焦的实验系统。详细地介绍了航空煤油裂解实验系统各个子系统的主要构成和主要功能。然后,利用所搭建的航空煤油裂解实验系统测量了航空煤油在入口温度285℃、压力3 MPa、质量流量0.44 g/s条件下的裂解特性,实验结果表明:在上述条件下,航空煤油的临界结焦功率为730 W;其裂解过程中进出口前后压差随着加热功率逐渐增大;同时产气速率随着功率增加逐渐增大,且在结焦时由于管路堵塞会有下降的现象;同时增加加热功率有助于航空煤油的裂解。
An experimental system for exploring the cracking and coking of RP-3 aviation kerosene was designed and constructed. The main components and main functions of each subsystem of aviation kerosene cracking experimental system are introduced in detail. Then, the aviation kerosene cracking experimental system was used to measure the cracking characteristics of aviation kerosene at the inlet temperature of 285?C, pressure of 3 MPa, and mass flow rate of 0.44 g/s. The experimental results show that under the above conditions, the critical coking power of aviation kerosene is 730 W, the pressure difference between the inlet and outlet during the cracking process gradually increases with the heating power, the gas production rate gradually increases with the increase of power, and there will be a decrease phenomenon due to pipeline blockage during coking; and the increase of heating power is conducive to the cracking of aviation kerosene.
[1] | 杜昆, 陈麒好, 孟宪龙, 等. 陶瓷基复合材料在航空发动机热端部件应用及热分析研究进展[J]. 推进技术, 2022(2): 107-125. |
[2] | 章思龙, 秦江, 周伟星, 等. 高超声速推进再生冷却研究综述[J]. 推进技术, 2018, 39(10): 2177-2190. https://doi.org/10.13675/j.cnki.tjjs.2018.10.003 |
[3] | Kuprowicz, N.J., Zabarnick, S., West, Z.J., et al. (2007) Use of Measured Species Class Concentrations with Chemical Kinetic Modeling for the Prediction of Autoxidation and Deposition of Jet Fuels. Energy Fuels, 21, 530-544. https://doi.org/10.1021/ef060391o |
[4] | 金烜, 沈赤兵, 吴先宇, 等. 超燃冲压发动机再生冷却技术研究进展[J]. 火箭推进, 2016, 42(5): 66-73. |
[5] | Pu, H., Li, S., Dong, M., et al. (2019) Convective Heat Transfer and Flow Resistance Characteristics of Supercritical Pressure Hydrocarbon Fuel in a Horizontal Rectangular Mini-Channel. Experimental Thermal and Fluid Science, 108, 39-53. https://doi.org/10.1016/j.expthermflusci.2019.06.002 |
[6] | Wang, X., Song, Q., Wu, Y., et al. (2019) Modelling and Numerical Simulation of n-Heptane Pyrolysis Coking Characteristics in a Millimetre-Sized Tube Reactor. Combustion and Flame, 201, 44-56. https://doi.org/10.1016/j.combustflame.2018.12.006 |
[7] | 姬鹏飞. 典型管路RP-3航空煤油热氧化结焦沉积特性研究[D]: [硕士学位论文]. 南京: 南京航空航天大学, 2018. |
[8] | 赵晋杰, 雷志良, 鲍泽威, 等. S型管内超临界航空煤油的裂解与结焦研究[J]. 推进技术, 2021(3): 692-700. https://doi.org/10.13675/j.cnki.tjjs.190556 |
[9] | Pei, X. and Hou, L. (2016) Secondary Flow and Oxidation Coking Deposition of Aviation Fuel. Fuel, 167, 68-74. https://doi.org/10.1016/j.fuel.2015.11.054 |
[10] | 黄文, 邓宏武, 徐国强, 等. U型管内超临界压力航空煤油压降特性[J]. 航空动力学报, 2011, 26(3): 582-587. https://doi.org/10.13224/j.cnki.jasp.2011.03.037 |
[11] | 张斌, 张春本, 邓宏武, 等. 超临界压力下碳氢燃料在竖直圆管内换热特性[J]. 航空动力学报, 2012, 27(3): 595-603. https://doi.org/10.13224/j.cnki.jasp.2012.03.019 |
[12] | 孙星, 徐震, 景婷婷, 等. 歧管式通道内碳氢燃料超临界压力流动换热的数值模拟研究[J]. 空天技术, 2024(1): 1-9. https://doi.org/10.16338/j.issn.2097-0714.20230015 |
[13] | West, Z.J. (2011) Studies of Jet Fuel Autoxidation Chemistry: Catalytic Hydroperoxide Decomposition & High Heat Flux Effects. PhD Thesis, University of Dayton, Dayton. |
[14] | 张枭雄, 侯凌云, 莫崇康, 等. 航空煤油热裂解结焦实验[J]. 航空动力学报, 2017, 32(6): 1307-1312. https://doi.org/10.13224/j.cnki.jasp.2017.06.004 |