|
血流储备分数、血同型半胱氨酸在冠状动脉粥样硬化性心脏病中的临床应用
|
Abstract:
冠状动脉粥样硬化性心脏病(coronary heart disease, CAD)简称冠心病,是由于冠状动脉血管发生粥样硬化病变,导致管腔狭窄、痉挛或阻塞,从而导致心肌缺血、缺氧甚至坏死的心脏疾病,是动脉粥样硬化所致器官病变中最为常见的类型。冠状动脉疾病的传统危险因素包括吸烟、高血压、高脂血症、糖尿病和家族史,高同型半胱氨酸血症(hyperhomocysteinemia)已被认为是动脉粥样硬化和血管疾病的新的可改变危险因素。有研究表明HHcy血症可能促使机体冠状动脉微循环功能明显障碍。冠状动脉造影(coronary angiography, CAG)长期以来作为诊断冠心病的“金标准”,有助于人们通过影像技术方法对冠状动脉解剖学情况有直观的认识。血流储备分数(fractional flow reserve, FFR)技术作为一项有创性测定血管血流功能学指标,判断该血管所供给区域是否合并心肌缺血,合理指导冠心病的介入治疗有着重要的意义。有研究表明,HHCy血症能促使机体冠状动脉微循环功能明显障碍,从而导致FFR值的下降。现主要对冠心病患者中血清同型半胱氨酸及有创血流储备分数的研究进展及临床应用加以综述。
Coronary atherosclerotic heart disease (CAD), referred to as coronary heart disease, is a heart disease in which atherosclerotic lesions occur in coronary arteries, leading to lumen narrowing, spasm, or obstruction, which results in myocardial ischemia, hypoxia, and even necrosis, and it is the most common type of atherosclerosis-induced organ disease. Traditional risk factors for coronary artery disease include smoking, hypertension, hyperlipidemia, diabetes mellitus, and family history. Hyperhomocysteinemia (HHcy) has been recognized as a new modifiable risk factor for atherosclerosis and vascular disease. It has been shown that HHcymia can contribute to significant dysfunction of the coronary microcirculation. Coronary angiography (CAG) has long been used as the “gold standard” for the diagnosis of coronary artery disease, which helps people visualize the anatomy of coronary arteries through imaging techniques. As an invasive measure of vascular flow function, fractional flow reserve (FFR) technique is of great significance in determining whether myocardial ischemia is combined in the area supplied by the vessel, and in rationally guiding the interventional therapy of coronary heart disease. HHCyemia can promote the function of coronary microcirculation to be significantly impaired. The research progress and clinical application of serum homocysteine and invasive flow reserve fraction in patients with coronary artery disease are summarized.
[1] | 冠心病合理用药指南(第2版) [J]. 中国医学前沿杂志(电子版), 2018, 10(6): 1-130. |
[2] | 马小慧, 刘蕾, 李波, 等. 非ST段抬高型心肌梗死患者死亡的危险因素及风险预测模型研究进展[J]. 老年医学研究, 2023, 4(6): 63-68. |
[3] | 王若冲, 于清茜, 王伟航, 等. 冠状动脉粥样硬化性心脏病的现代医学研究进展[J]. 中外医学研究, 2023, 21(34): 172-175. |
[4] | 李锦州, 黄燕丽. 血流储备分数在冠状动脉临界病变介入治疗中的指导价值[J]. 实用检验医师杂志, 2023, 15(3): 229-233. |
[5] | 林丛. 高同型半胱氨酸血症对冠状动脉微循环能的影响[D]: [博士学位论文]. 济南: 山东大学, 2017. |
[6] | Tsao, C.W., Aday, A.W., Almarzooq, Z.I., et al. (2022) Heart Disease and Stroke Statistics-2022 Update: A Report from the American Heart Association [Published Correction Appears in Circulation. 2022 Sep 6; 146(10): E141]. Circulation, 145, E153-E639. https://doi.org/10.1161/CIR.0000000000001074 |
[7] | Virani, S.S., Alonso, A., Aparicio, H.J., et al. (2021) Heart Disease and Stroke Statistics-2021 Update: A Report from the American Heart Association. Circulation, 143, E254-E743. |
[8] | 中华医学会心血管病学分会介入心脏病学组, 中华医学会心血管病学分会动脉粥样硬化与冠心病学组, 中国医师协会心血管内科医师分会血栓防治专业委员会, 等. 稳定性冠心病诊断与治疗指南[J]. 中华心血管病杂志, 2018, 46(9): 680-694. |
[9] | Lawton, J.S., Tamis-Holland, J.E., Bangalore, S., et al. (2022) 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines [Published Correction Appears in J Am Coll Cardiol. 2022 Apr 19; 79(15): 1547]. Journal of the American College of Cardiology, 79, 197-215. https://doi.org/10.1016/j.jacc.2021.09.005 |
[10] | Maron, D.J., Hochman, J.S., Reynolds, H.R., et al. (2020) Initial Invasive or Conservative Strategy for Stable Coronary Disease. The New England Journal of Medicine, 382, 1395-1407. https://doi.org/10.1056/NEJMoa1915922 |
[11] | Mesnier, J., Ducrocq, G., Danchin, N., et al. (2021) International Observational Analysis of Evolution and Outcomes of Chronic Stable Angina: The Multinational CLARIFY Study. Circulation, 144, 512-523. https://doi.org/10.1161/CIRCULATIONAHA.121.054567 |
[12] | Boden, W.E., O’Rourke, R.A., Teo, K.K., et al. (2007) Optimal Medical Therapy with or without PCI for Stable Coronary Disease. The New England Journal of Medicine, 356, 1503-1516. https://doi.org/10.1056/NEJMoa070829 |
[13] | Group, B.D.S., Frye, R.L., August, P., et al. (2009) Arandomized Trial of Therapies for Type 2 Diabetes and Coronary Artery Disease. The New England Journal of Medicine, 360, 2503-2515. https://doi.org/10.1056/NEJMoa0805796 |
[14] | Paganelli, F., Mottola, G., Fromonot, J., et al. (2021) Hyperhomocysteinemia and Cardiovascular Disease: Is the Adenosinergic System the Missing Link? International Journal of Molecular Sciences, 22, Article No. 1690. https://doi.org/10.3390/ijms22041690 |
[15] | Chen, N., Liu, J., Qiao, Z., Liu, Y., et al. (2018) Chemical Proteomic Profiling of Protein N-Homocysteinylation with a Thioester Probe. Chemical Science, 9, 2826-2830. https://doi.org/10.1039/C8SC00221E |
[16] | Baloula, V., Fructuoso, M., Kassis, N., et al. (2018) Homocysteine-Lowering Gene Therapy Rescues Signaling Pathways in Brain of Mice with Intermediate Hyperhomocysteinemia. Redox Biology, 9, 200-209. https://doi.org/10.1016/j.redox.2018.08.015 |
[17] | Fu, Y., Wang, X. and Kong, W. (2018) Hyperhomocysteinaemia and Vascular Injury: Advances Inmechanisms and Drug Targets. British Journal of Pharmacology, 175, 1173-1189. https://doi.org/10.1111/bph.13988 |
[18] | Li, H., Liu, Z., Liu, L., Li, W., et al. (2019) V Ascular Protection of TPE-CA on Hyperhomocysteinemia-Induced Vascular Endothelial Dysfunction through AA Metabolism Modulated CYPs Pathway. International Journal of Biological Sciences, 15, 2037-2050. https://doi.org/10.7150/ijbs.35245 |
[19] | 刘振岳. 维吾尔族原发型高血压病患者血浆同型半胱氨酸水平与中医辨证分型的相关性研究[J]. 云南中医中药杂志, 2020, 41(3): 25-27. |
[20] | Cui, X., Navneet, S., Wang, J., et al. (2017) Analysis of MTHFR, CBS, Glutathione, Taurine, and Hydrogen Sulfide Levels in Retinas of Hyperhomocysteinemicmice. Investigative Ophthalmology & Visual Science, 58, 1954-1963. https://doi.org/10.1167/iovs.16-21247 |
[21] | Zheng, Z., Liu, L., Zhou, K., et al. (2020) Anti-Oxidant and Anti-Endothelial Dysfunctional Properties of Nano-Selenium in Vitro and in Vivo of Hyperhomocysteinemic Rats. International Journal of Nanomedicine, 15, 4501-4521. https://doi.org/10.2147/IJN.S255392 |
[22] | Morellato, A.E., Umansky, C. and Pontel, L.B. (2021) The Toxic Side of One-Carbon Metabolism and Epigenetics. Redox Biology, 40, Article ID: 101850. https://doi.org/10.1016/j.redox.2020.101850 |
[23] | Zhao, G., Deng, J., Shen, Y., et al. (2019) Hyperhomocysteinemia Is Key for Increased Susceptibility to PND in Aged Mice. Annals of Clinical and Translational Neurology, 6, 1435-1444. https://doi.org/10.1002/acn3.50838 |
[24] | Raza-Iqbal, S., Tanaka, T., Anai, M., et al. (2015) Transcriptome Analysis of K-877 (a Novel Selective PPARalpha Modulator (SPPARMalpha))-Regulated Genes in Primary Human Hepatocytes and the Mouse Liver. Journal of Atherosclerosis and Thrombosis, 22, 754-772. https://doi.org/10.5551/jat.28720 |
[25] | Hamed, A.M., El-Kharashi, O.A., Boctor, S.S. and Abd-Elaziz, L.F. (2017) Potential Involvement of PPAR Alpha Activation in Diminishing the Hepatoprotective Effect of Fenofibrate in NAFLD: Accuracy of Non-Invasive Panel in Determining the Stage of Liver Fibrosis in Rats. Biomedicine & Pharmacotherapy, 85, 68-78. https://doi.org/10.1016/j.biopha.2016.11.114 |
[26] | Padovani, D., Hessani, A., Castillo, F.T., et al. (2016) Sulfheme Formation during Homocysteine S-Oxygenation by Catalase in Cancers and Neurodegenerative Diseases. Nature Communications, 7, Article No. 13386. https://doi.org/10.1038/ncomms13386 |
[27] | Lin, X., Meng, X. and Song, Z. (2019) Homocysteine and Psoriasis. Bioscience Reports, 39, BSR20190867. https://doi.org/10.1042/BSR20190867 |
[28] | Rong, D., Liu, J., Jia, X., et al. (2017) Hyperhomocysteinaemia Is an Independent Risk Factor for Peripheral Arterial Disease in a Chinese Han Population. Atherosclerosis, 263, 205-210. https://doi.org/10.1016/j.atherosclerosis.2017.05.006 |
[29] | Mohammad, G., Radhakrishnan, R. and Kowluru, R.A. (2020) Hydrogen Sulfide: A Potential Therapeutic Target in the Development of Diabetic Retinopathy. Investigative Ophthalmology & Visual Science, 61, 35. https://doi.org/10.1167/iovs.61.14.35 |
[30] | Luk, C., Haywood, N.J., Bridge, K.I., et al. (2022) Paracrine Role of the Endothelium in Metabolic Homeostasis in Health and Nutrient Excess. Frontiers in Cardiovascular Medicine, 9, Article ID: 882923. https://doi.org/10.3389/fcvm.2022.882923 |
[31] | Qiu, T., Zhou, H., Li, S., et al. (2020) Effects of Saccharides from Arctium lappa L. Root on FeCl3-Induced Arterial Thrombosis via the ERK/NF-KappaB Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 7691352. https://doi.org/10.1155/2020/7691352 |
[32] | Jiang, H., Zhou, Y., Nabavi, S.M., et al. (2022) Mechanisms of Oxidized LDL-Mediated Endothelial Dysfunction and Its Consequences for the Development of Atherosclerosis. Frontiers in Cardiovascular Medicine, 9, Article ID: 925923. https://doi.org/10.3389/fcvm.2022.925923 |
[33] | Dagvadorj, J., Shimada, K., Chen, S., et al. (2015) Lipopolysaccharide Induces Alveolar Macrophage Necrosis via CD14 and the P2X7 Receptor Leading to Interleukin-1alpha Release. Immunity, 42, 640-653. https://doi.org/10.1016/j.immuni.2015.03.007 |
[34] | Wei, X., Ying, M., Dehaini, D., et al. (2018) Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis. ACS Nano, 12, 109-116. https://doi.org/10.1021/acsnano.7b07720 |
[35] | Tan, W., Wang, Y., Wang, K., et al. (2020) Improvement of Endothelial Dysfunction of Berberine in Atherosclerotic Mice and Mechanism Exploring through TMT-Based Proteomics. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 8683404. https://doi.org/10.1155/2020/8683404 |
[36] | Zhang, Y., Li, C., Huang, Y., et al. (2020) EOFAZ Inhibits Endothelialtomesenchymal Transition through Downregulation of KLF4. International Journal of Molecular Medicine, 46, 300-310. https://doi.org/10.3892/ijmm.2020.4572 |
[37] | Kamanna, V.S., Ganji, S.H., Shelkovnikov, S., et al. (2012) Iron Sucrose Promotes Endothelial Injury and Dysfunction and Monocyte Adhesion/Infiltration. American Journal of Nephrology, 35, 114-119. https://doi.org/10.1159/000334939 |
[38] | Chen, L.T., Xu, T.T., Qiu, Y.Q., et al. (2021) Homocysteine Induced a Calcium-Mediated Disruption of Mitochondrial Function and Dynamics in Endothelial Cells. Journal of Biochemical and Molecular Toxicology, 35, E22737. https://doi.org/10.1002/jbt.22737 |
[39] | Rodionov, R.N., Dayoub, H., Lynch, C.M., et al. (2010) Overexpression of Dimethylarginine Dimethylaminohydrolase Protects against Cerebral Vascular Effects of Hyperhomocysteinemia. Circulation Research, 106, 551-558. https://doi.org/10.1161/CIRCRESAHA.109.200360 |
[40] | Kang, S.S., Wong, P.W. and Malinow, M.R. (1992) Hyperhomocyst(E)Inemia as a Risk Factor for Occlusive Vascular Disease. Annual Review of Nutrition, 12, 279-298. https://doi.org/10.1146/annurev.nu.12.070192.001431 |
[41] | Stampfer, M.J., Malinow, M.R., Willett, W.C., et al. (1992) A Prospective Study of Plasma Homocyst(E)Ine and Risk of Myocardial Infarction in US Physicians. JAMA, 268, 877-881. https://doi.org/10.1001/jama.268.7.877 |
[42] | Pijls, N.H., Van Son, J.A., Kirkeeide, R.L., et al. (1993) Experimental Basis of Determining Maximum Coronary, Myocardial, and Collateral Blood Flow by Pressure Measurements for Assessing Functional Stenosis Severity before and after Percutaneous Transluminal Coronary Angioplasty. Circulation, 87, 1354-1367. https://doi.org/10.1161/01.CIR.87.4.1354 |
[43] | Pijls, N.H., De Bruyne, B., Peels, K., et al. (1996) Measurement of Fractional Flow Reserve to Assess the Functional Severity of Coronary-Artery Stenoses. The New England Journal of Medicine, 334, 1703-1708. https://doi.org/10.1056/NEJM199606273342604 |
[44] | Sun, Y.H., Anderson, T.J., Parker, K.H., et al. (2000) Wave-Intensity Analysis: A New Approach to Coronary Hemodynamics. Journal of Applied Physiology, 89, 1636-1644. https://doi.org/10.1152/jappl.2000.89.4.1636 |
[45] | Muller, J.M., Davis, M.J. and Chilian, W.M. (1996) Integrated Regulation of Pressure and Flow in the Coronary Microcirculation. Cardiovascular Research, 32, 668-678. https://doi.org/10.1016/S0008-6363(96)00111-3 |
[46] | Adjedj, J., Toth, G.G., Johnson, N.P., et al. (2015) Intracoronary Adenosine: Dose-Response Relationship with Hyperemia. JACC: Cardiovascular Interventions, 8, 1422-1430. https://doi.org/10.1016/j.jcin.2015.04.028 |
[47] | Mizukami, T., Sonck, J., Gallinoro, E., et al. (2021) Duration of Hyperemia with Intracoronary Administration of Papaverine. Journal of the American Heart Association, 10, E018562. https://doi.org/10.1161/JAHA.120.018562 |
[48] | Garcia, D., Harbaoui, B., Van De Hoef, T.P., et al. (2019) Relationship between FFR, CFR and Coronary Microvascular Resistance—Practical Implications for FFR-Guided Percutaneous Coronary Intervention. PLOS ONE, 14, E0208612. https://doi.org/10.1371/journal.pone.0208612 |
[49] | Mangiacapra, F., Viscusi, M.M., Paolucci, L., et al. (2021) The Pivotal Role of Invasive Functional Assessment in Patients with Myocardial Infarction with Non-Obstructive Coronary Arteries (MINOCA). Frontiers in Cardiovascular Medicine, 8, Article ID: 781485. https://doi.org/10.3389/fcvm.2021.781485 |
[50] | 蔡炜, 陈恩, 范林, 等. 冠状动脉生理学功能评估技术的发展现状[J]. 福建医科大学学报, 2022, 56(4): 291-297. |
[51] | Green, N.E., Chen, S.-Y.J., Hansgen, A.R., et al. (2005) Angiographic Views Used for Percutaneous Coronary Interventions: A Three-Dimensional Analysis of Physician-Determined vs. Computer-Generated Views. Catheterization and Cardiovascular Interventions, 64, 451-459. https://doi.org/10.1002/ccd.20331 |
[52] | Toth, G., Johnson, N.P., Wijns, W., et al. (2021) Revascularization Decisions in Patients with Chronic Coronary Syndromes: Results of the Second International Survey on Interventional Strategy (ISIS-2). International Journal of Cardiology, 336, 38-44. https://doi.org/10.1016/j.ijcard.2021.05.005 |
[53] | Toth, G.G., De Bruyne, B., Kala, P., et al. (2019) Graft Patency after FFR-Guided versus Angiography-Guided Coronary Artery Bypass Grafting: The GRAFFITI Trial. EuroIntervention, 15, E999-E1005. https://doi.org/10.4244/EIJ-D-19-00463 |
[54] | Puymirat, E., Cayla, G., Simon, T., et al. (2021) Multivessel PCI Guided by FFR or Angiography for Myocardial Infarction. The New England Journal of Medicine, 385, 297-308. https://doi.org/10.1056/NEJMoa2104650 |
[55] | Rioufol, G., Dérimay, F., Roubille, F., et al. (2021) Fractional Flow Reserve to Guide Treatment of Patients with Multivessel Coronary Artery Disease. Journal of the American College of Cardiology, 78, 1875-1885. |
[56] | Stables, R.H., Mullen, L.J., Elguindy, M., et al. (2022) Routine Pressure Wire Assessment versus Conventional Angiography in the Management of Patients with Coronary Artery Disease: The RIPCORD 2 Trial. Circulation, 146, 687-698. |
[57] | V?lz, S., Dworeck, C., Redfors, B., et al. (2020) Survival of Patients with Angina Pectoris Undergoing Percutaneous Coronary Intervention with Intracoronary Pressure Wire Guidance. Journal of the American College of Cardiology, 75, 2785-2799. https://doi.org/10.1016/j.jacc.2020.04.018 |
[58] | Omran, J., Enezate, T., Abdullah, O., et al. (2020) Outcomes of Fractional Flow Reserve-Guided Percutaneous Coronary Interventions in Patients with Acute Coronary Syndrome. Catheterization and Cardiovascular Interventions, 96, E149-E154. https://doi.org/10.1002/ccd.28611 |
[59] | Wong, C., Ng, A., Ada, C., et al. (2021) A Real-World Comparison of Outcomes between Fractional Flow Reserve-Guided versus Angiography-Guided Percutaneous Coronary Intervention. PLOS ONE, 16, E0259662. https://doi.org/10.1371/journal.pone.0259662 |
[60] | Adjedj, J., Morelle, J.-F., Saint Etienne, C., et al. (2022) Clinical Impact of FFR-Guided PCI Compared to Angio-Guided PCI from the France PCI Registry. Catheterization and Cardiovascular Interventions, 100, 40-48. https://doi.org/10.1002/ccd.30225 |
[61] | Bech, G.J., De Bruyne, B., Pijls, N.H., et al. (2001) Fractional Flow Reserve to Determine the Appropriateness of Angioplasty in Moderate Coronary Stenosis: A Randomized Trial. Circulation, 103, 2928-2934. https://doi.org/10.1161/01.CIR.103.24.2928 |
[62] | Weerts, J., Pustjens, T., Amin, E., et al. (2021) Long-Term Outcome after Deferred Revascularization Due to Negative Fractional Flow Reserve in Intermediate Coronary Lesions. Catheterization and Cardiovascular Interventions, 97, 247-256. https://doi.org/10.1002/ccd.28753 |
[63] | Zimmermann, F.M., Ferrara, A., Johnson, N.P., et al. (2015) Deferral vs. Performance of Percutaneous Coronary Intervention of Functionally Non-Significant Coronary Stenosis: 15-Year Follow-Up of the DEFER Trial. European Heart Journal, 36, 3182-3188. https://doi.org/10.1093/eurheartj/ehv452 |
[64] | Johnson, N.P., Tóth, G.G., Lai, D., et al. (2014) Prognostic Value of Fractional Flow Reserve: Linking Physiologic Severity to Clinical Outcomes. Journal of the American College of Cardiology, 64, 1641-1654. |
[65] | Barbato, E., Toth, G.G., Johnson, N.P., et al. (2016) A Prospective Natural History Study of Coronary Atherosclerosis Using Fractional Flow Reserve. Journal of the American College of Cardiology, 68, 2247-2255. https://doi.org/10.1016/j.jacc.2016.08.055 |
[66] | Muller, O., Ntalianis, A., Wijns, W., et al. (2013) Association of Biomarkers of Lipid Modification with Functional and Morphological Indices of Coronary Stenosis Severity in Stable Coronary Artery Disease. Journal of Cardiovascular Translational Research, 6, 536-544. https://doi.org/10.1007/s12265-013-9468-x |