|
基于过氧化物酶体增殖物激活受体探索治疗非酒精性脂肪肝的新视角
|
Abstract:
非酒精性脂肪肝(Nonalcoholic fatty liver disease, NAFLD)涉及到脂代谢紊乱、炎症反应、纤维化、肝血管功能障碍等一系列复杂的病理生理过程。昼夜节律的不协调也在NAFLD的发展中扮演重要角色。过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptors, PPARs)作为核受体超家族的重要成员,包括PPARα、PPARβ/δ和PPARγ,在脂质代谢、炎症、肝星状细胞激活、维持正常血管功能以及昼夜节律等多个生理方面都发挥关键作用。PPARs参与调节NAFLD发病机制的多个方面。本文旨在从多个角度探讨PPARs作为潜在的NAFLD治疗靶点的可能性。
Nonalcoholic fatty liver disease (NAFLD) involves a complex pathological process encompassing lipid metabolism disruption, inflammatory responses, fibrosis, and hepatic vascular dysfunction. The dysregulation of circadian rhythms also plays a significant role in NAFLD development. Peroxisome proliferator-activated receptors (PPARs), pivotal members of the nuclear receptor superfamily, including PPARα, PPARβ/δ, and PPARγ, play critical roles in multiple physiological aspects such as lipid metabolism, inflammation, hepatic stellate cell activation, maintenance of normal vascular function, and circadian rhythms. PPARs are involved in regulating various aspects of the pathogenesis of NAFLD. This paper aims to explore the potential of PPARs as therapeutic targets for NAFLD from multiple perspectives.
[1] | Riazi, K., Azhari, H., Charette, J.H., et al. (2022) The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 7, 851-861. https://doi.org/10.1016/S2468-1253(22)00165-0 |
[2] | Friedman, S.L., Neuschwander-Tetri, B.A., Rinella, M., et al. (2018) Mechanisms of NAFLD Development and Therapeutic Strategies. Nature Medicine, 24, 908-922. https://doi.org/10.1038/s41591-018-0104-9 |
[3] | Saran, A.R., Dave, S. and Zarrinpar, A. (2020) Circadian Rhythms in the Pathogenesis and Treatment of Fatty Liver Disease. Gastroenterology, 158, 1948-1966.E1. https://doi.org/10.1053/j.gastro.2020.01.050 |
[4] | Khan, R.S., Bril, F., Cusi, K., et al. (2019) Modulation of Insulin Resistance in Nonalcoholic Fatty Liver Disease. Hepatology (Baltimore, Md), 70, 711-724. https://doi.org/10.1002/hep.30429 |
[5] | Berthier, A., Johanns, M., Zummo, F.P., et al. (2021) PPARs in Liver Physiology. Biochimica et Biophysica Acta Molecular Basis of Disease, 1867, Article ID: 166097. https://doi.org/10.1016/j.bbadis.2021.166097 |
[6] | Qiu, Y.Y., Zhang, J., Zeng, F.Y., et al. (2023) Roles of the Peroxisome Proliferator-Activated Receptors (PPARs) in the Pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD). Pharmacological Research, 192, Article ID: 106786. https://doi.org/10.1016/j.phrs.2023.106786 |
[7] | Dubois, V., Eeckhoute, J., Lefebvre, P., et al. (2017) Distinct but Complementary Contributions of PPAR Isotypes to Energy Homeostasis. The Journal of Clinical Investigation, 127, 1202-1214. https://doi.org/10.1172/JCI88894 |
[8] | Christofides, A., Konstantinidou, E., Jani, C., et al. (2021) The Role of Peroxisome Proliferator-Activated Receptors (PPAR) in Immune Responses. Metabolism: Clinical and Experimental, 114, Article ID: 154338. https://doi.org/10.1016/j.metabol.2020.154338 |
[9] | Willson, T.M., Brown, P.J., Sternbach, D.D., et al. (2000) The PPARs: From Orphan Receptors to Drug Discovery. Journal of Medicinal Chemistry, 43, 527-550. https://doi.org/10.1021/jm990554g |
[10] | Bougarne, N., Weyers, B., Desmet, S.J., et al. (2018) Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocrine Reviews, 39, 760-802. https://doi.org/10.1210/er.2018-00064 |
[11] | Montagner, A., Polizzi, A., Fouché, E., et al. (2016) Liver PPARα Is Crucial for Whole-Body Fatty Acid Homeostasis and Is Protective against NAFLD. Gut, 65, 1202-1214. https://doi.org/10.1136/gutjnl-2015-310798 |
[12] | Fisher, F.M. and Maratos-Flier, E. (2016) Understanding the Physiology of FGF21. Annual Review of Physiology, 78, 223-241. https://doi.org/10.1146/annurev-physiol-021115-105339 |
[13] | Janani, C. and Ranjitha Kumari, B.D. (2015) PPAR Gamma Gene—A Review. Diabetes & Metabolic Syndrome, 9, 46-50. https://doi.org/10.1016/j.dsx.2014.09.015 |
[14] | Schuler, M., Ali, F., Chambon, C., et al. (2006) PGC1alpha Expression Is Controlled in Skeletal Muscles by PPARbeta, Whose Ablation Results in Fiber-Type Switching, Obesity, and Type 2 Diabetes. Cell Metabolism, 4, 407-414. https://doi.org/10.1016/j.cmet.2006.10.003 |
[15] | Pawlak, M., Lefebvre, P. and Staels, B. (2015) Molecular Mechanism of PPARα Action and Its Impact on Lipid Metabolism, Inflammation and Fibrosis in Non-Alcoholic Fatty Liver Disease. Journal of Hepatology, 62, 720-733. https://doi.org/10.1016/j.jhep.2014.10.039 |
[16] | Das Pradhan, A., Glynn, R.J., Fruchart, J.C., et al. (2022) Triglyceride Lowering with Pemafibrate to Reduce Cardiovascular Risk. The New England Journal of Medicine, 387, 1923-1934. https://doi.org/10.1056/NEJMoa2210645 |
[17] | Filali-Mouncef, Y., Hunter, C., Roccio, F., et al. (2022) The Ménage à Trois of Autophagy, Lipid Droplets and Liver Disease. Autophagy, 18, 50-72. https://doi.org/10.1080/15548627.2021.1895658 |
[18] | Luo, R., Su, L.Y., Li, G., et al. (2020) Activation of PPARA-Mediated Autophagy Reduces Alzheimer Disease-Like Pathology and Cognitive Decline in a Murine Model. Autophagy, 16, 52-69. https://doi.org/10.1080/15548627.2019.1596488 |
[19] | Xu, Y., Yu, T., Ma, G., et al. (2021) Berberine Modulates Deacetylation of PPARγ to Promote Adipose Tissue Remodeling and Thermogenesis via AMPK/SIRT1 Pathway. International Journal of Biological Sciences, 17, 3173-3187. https://doi.org/10.7150/ijbs.62556 |
[20] | Katafuchi, T., Holland, W.L., Kollipara, R.K., et al. (2018) PPARγ-K107 SUMOylation Regulates Insulin Sensitivity but Not Adiposity in Mice. Proceedings of the National Academy of Sciences of the United States of America, 115, 12102-12111. https://doi.org/10.1073/pnas.1814522115 |
[21] | Andrade, M.L., Gilio, G.R., Perandini, L.A., et al. (2021) PPARγ-Induced Upregulation of Subcutaneous Fat Adiponectin Secretion, Glyceroneogenesis and BCAA Oxidation Requires MTORC1 Activity. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 1866, Article ID: 158967. https://doi.org/10.1016/j.bbalip.2021.158967 |
[22] | Lim, H.J., Park, J.H., Lee, S., et al. (2009) PPARdelta Ligand L-165041 Ameliorates Western Diet-Induced Hepatic Lipid Accumulation and Inflammation in LDLR-/-Mice. European Journal of Pharmacology, 622, 45-51. https://doi.org/10.1016/j.ejphar.2009.09.002 |
[23] | Lee, C.H., Chawla, A., Urbiztondo, N., et al. (2003) Transcriptional Repression of Atherogenic Inflammation: Modulation by PPARdelta. Science (New York, NY), 302, 453-457. https://doi.org/10.1126/science.1087344 |
[24] | Risérus, U., Sprecher, D., Johnson, T., et al. (2008) Activation of Peroxisome Proliferator-Activated Receptor (PPAR)Delta Promotes Reversal of Multiple Metabolic Abnormalities, Reduces Oxidative Stress, and Increases Fatty Acid Oxidation in Moderately Obese Men. Diabetes, 57, 332-339. https://doi.org/10.2337/db07-1318 |
[25] | Tong, L., Wang, L., Yao, S., et al. (2019) PPARδ Attenuates Hepatic Steatosis through Autophagy-Mediated Fatty Acid Oxidation. Cell Death & Disease, 10, Article No. 197. https://doi.org/10.1038/s41419-019-1458-8 |
[26] | Paternostro, R. and Trauner, M. (2022) Current Treatment of Non-Alcoholic Fatty Liver Disease. Journal of Internal Medicine, 292, 190-204. https://doi.org/10.1111/joim.13531 |
[27] | Kleemann, R., Gervois, P.P., Verschuren, L., et al. (2003) Fibrates Down-Regulate IL-1-Stimulated C-Reactive Protein Gene Expression in Hepatocytes by Reducing Nuclear P50-NFkappa B-C/EBP-Beta Complex Formation. Blood, 101, 545-551. https://doi.org/10.1182/blood-2002-06-1762 |
[28] | Didonato, J.A., Mercurio, F. and Karin, M. (2012) NF-κB and the Link between Inflammation and Cancer. Immunological Reviews, 246, 379-400. https://doi.org/10.1111/j.1600-065X.2012.01099.x |
[29] | Korbecki, J., Bobi?Ski, R. and Dutka, M. (2019) Self-Regulation of the Inflammatory Response by Peroxisome Proliferator-Activated Receptors. Inflammation Research: Official Journal of the European Histamine Research Society [et al], 68, 443-458. https://doi.org/10.1007/s00011-019-01231-1 |
[30] | Yang, M., Wang, Y., Chen, J., et al. (2020) Functional Analysis of Epinephelus Coioides Peroxisome Proliferative-Activated Receptor α (PPARα): Involvement in Response to Viral Infection. Fish & Shellfish Immunology, 102, 257-266. https://doi.org/10.1016/j.fsi.2020.04.025 |
[31] | Gervois, P., Kleemann, R., Pilon, A., et al. (2004) Global Suppression of IL-6-Induced Acute Phase Response Gene Expression after Chronic in Vivo Treatment with the Peroxisome Proliferator-Activated Receptor-Alpha Activator Fenofibrate. The Journal of Biological Chemistry, 279, 16154-16160. https://doi.org/10.1074/jbc.M400346200 |
[32] | Toyama, T., Nakamura, H., Harano, Y., et al. (2004) PPARalpha Ligands Activate Antioxidant Enzymes and Suppress Hepatic Fibrosis in Rats. Biochemical and Biophysical Research Communications, 324, 697-704. https://doi.org/10.1016/j.bbrc.2004.09.110 |
[33] | Pawlak, M., Baugé, E., Bourguet, W., et al. (2014) The Transrepressive Activity of Peroxisome Proliferator-Activated Receptor Alpha Is Necessary and Sufficient to Prevent Liver Fibrosis in Mice. Hepatology (Baltimore, Md), 60, 1593-1606. https://doi.org/10.1002/hep.27297 |
[34] | Odegaard, J.I., Ricardo-Gonzalez, R.R., Goforth, M.H., et al. (2007) Macrophage-Specific PPARgamma Controls Alternative Activation and Improves Insulin Resistance. Nature, 447, 1116-1120. https://doi.org/10.1038/nature05894 |
[35] | Bouhlel, M.A., Derudas, B., Rigamonti, E., et al. (2007) PPARgamma Activation Primes Human Monocytes into Alternative M2 Macrophages with Anti-Inflammatory Properties. Cell Metabolism, 6, 137-143. https://doi.org/10.1016/j.cmet.2007.06.010 |
[36] | Nelson, V.L., Nguyen, H.C.B., Garcìa-Ca?averas, J.C., et al. (2018) PPARγ Is a Nexus Controlling Alternative Activation of Macrophages via Glutamine Metabolism. Genes & Development, 32, 1035-1044. https://doi.org/10.1101/gad.312355.118 |
[37] | Yunna, C., Mengru, H., Lei, W., et al. (2020) Macrophage M1/M2 Polarization. European Journal of Pharmacology, 877, Article ID: 173090. https://doi.org/10.1016/j.ejphar.2020.173090 |
[38] | Delerive, P., Fruchart, J.C. and Staels, B. (2001) Peroxisome Proliferator-Activated Receptors in Inflammation Control. The Journal of Endocrinology, 169, 453-459. https://doi.org/10.1677/joe.0.1690453 |
[39] | Reuter, S., Gupta, S.C., Chaturvedi, M.M., et al. (2010) Oxidative Stress, Inflammation, and Cancer: How Are They Linked? Free Radical Biology & Medicine, 49, 1603-1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006 |
[40] | Lee, M.Y., Choi, R., Kim, H.M., et al. (2012) Peroxisome Proliferator-Activated Receptor δ Agonist Attenuates Hepatic Steatosis by Anti-Inflammatory Mechanism. Experimental & Molecular Medicine, 44, 578-585. https://doi.org/10.3858/emm.2012.44.10.066 |
[41] | Shan, W., Palkar, P.S., Murray, I.A., et al. (2008) Ligand Activation of Peroxisome Proliferator-Activated Receptor Beta/Delta (PPARbeta/Delta) Attenuates Carbon Tetrachloride Hepatotoxicity by Downregulating Proinflammatory Gene Expression. Toxicological Sciences: An Official Journal of the Society of Toxicology, 105, 418-428. https://doi.org/10.1093/toxsci/kfn142 |
[42] | Parlati, L., Régnier, M., Guillou, H., et al. (2021) New Targets for NAFLD. JHEP Reports: Innovation in Hepatology, 3, Article ID: 100346. https://doi.org/10.1016/j.jhepr.2021.100346 |
[43] | Nan, Y.M., Kong, L.B., Ren, W.G., et al. (2013) Activation of Peroxisome Proliferator Activated Receptor Alpha Ameliorates Ethanol Mediated Liver Fibrosis in Mice. Lipids in Health and Disease, 12, Article No. 11. https://doi.org/10.1186/1476-511X-12-11 |
[44] | Trivedi, P., Wang, S. and Friedman, S.L. (2021) The Power of Plasticity-Metabolic Regulation of Hepatic Stellate Cells. Cell Metabolism, 33, 242-257. https://doi.org/10.1016/j.cmet.2020.10.026 |
[45] | Li, X., Chen, Y., Wu, S., et al. (2015) MicroRNA-34a and MicroRNA-34c Promote the Activation of Human Hepatic Stellate Cells by Targeting Peroxisome Proliferator-Activated Receptor γ. Molecular Medicine Reports, 11, 1017-1024. https://doi.org/10.3892/mmr.2014.2846 |
[46] | Lakshman, M.R., Reyes-Gordillo, K., Varatharajalu, R., et al. (2014) Novel Modulators of Hepatosteatosis, Inflammation and Fibrogenesis. Hepatology International, 8, 413-420. https://doi.org/10.1007/s12072-014-9526-8 |
[47] | K?nigshofer, P., Brusilovskaya, K., Petrenko, O., et al. (2021) Nuclear Receptors in Liver Fibrosis. Biochimica et Biophysica Acta Molecular Basis of Disease, 1867, Article ID: 166235. https://doi.org/10.1016/j.bbadis.2021.166235 |
[48] | Iwaisako, K., Haimerl, M., Paik, Y.H., et al. (2012) Protection from Liver Fibrosis by a Peroxisome Proliferator-Activated Receptor δ Agonist. Proceedings of the National Academy of Sciences of the United States of America, 109, E1369-E1376. https://doi.org/10.1073/pnas.1202464109 |
[49] | Hellemans, K., Michalik, L., Dittie, A., et al. (2003) Peroxisome Proliferator-Activated Receptor-Beta Signaling Contributes to Enhanced Proliferation of Hepatic Stellate Cells. Gastroenterology, 124, 184-201. https://doi.org/10.1053/gast.2003.50015 |
[50] | Reinke, H. and Asher, G. (2016) Circadian Clock Control of Liver Metabolic Functions. Gastroenterology, 150, 574-580. https://doi.org/10.1053/j.gastro.2015.11.043 |
[51] | Patke, A., Young, M.W. and Axelrod, S. (2020) Molecular Mechanisms and Physiological Importance of Circadian Rhythms. Nature Reviews Molecular Cell Biology, 21, 67-84. https://doi.org/10.1038/s41580-019-0179-2 |
[52] | Oh, H.Y.P., Visvalingam, V. and Wahli, W. (2019) The PPAR-Microbiota-Metabolic Organ Trilogy to Fine-Tune Physiology. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 33, 9706-9730. https://doi.org/10.1096/fj.201802681RR |
[53] | Duszka, K. and Wahli, W. (2020) Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients, 12, Article No. 3476. https://doi.org/10.3390/nu12113476 |
[54] | Canaple, L., Rambaud, J., Dkhissi-Benyahya, O., et al. (2006) Reciprocal Regulation of Brain and Muscle Arnt-Like Protein 1 and Peroxisome Proliferator-Activated Receptor α Defines a Novel Positive Feedback Loop in the Rodent Liver Circadian Clock. Molecular Endocrinology, 20, 1715-1727. https://doi.org/10.1210/me.2006-0052 |
[55] | Gervois, P., Chopin-Delannoy, S., Fadel, A., et al. (1999) Fibrates Increase Human REV-ERBα Expression in Liver via a Novel Peroxisome Proliferator-Activated Receptor Response Element. Molecular Endocrinology, 13, 400-409. https://doi.org/10.1210/mend.13.3.0248 |
[56] | Schmutz, I., Ripperger, J.A., Baeriswyl-Aebischer, S., et al. (2010) The Mammalian Clock Component PERIOD2 Coordinates Circadian Output by Interaction with Nuclear Receptors. Genes & Development, 24, 345-357. https://doi.org/10.1101/gad.564110 |
[57] | Chua, E.C.-P., Shui, G., Lee, I.T.-G., et al. (2013) Extensive Diversity in Circadian Regulation of Plasma Lipids and Evidence for Different Circadian Metabolic Phenotypes in Humans, 110, 14468-14473. https://doi.org/10.1073/pnas.1222647110 |
[58] | Shimba, S., Ishii, N., Ohta, Y., et al. (2005) Brain and Muscle Arnt-Like Protein-1 (BMAL1): A Component of the Molecular Clock, Regulates Adipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102, 12071-12076. https://doi.org/10.1073/pnas.0502383102 |
[59] | Mazzoccoli, G., Vinciguerra, M., Oben, J., et al. (2014) Non-Alcoholic Fatty Liver Disease: The Role of Nuclear Receptors and Circadian Rhythmicity. Liver International: Official Journal of the International Association for the Study of the Liver, 34, 1133-1152. https://doi.org/10.1111/liv.12534 |
[60] | Zvonic, S., Ptitsyn, A.A., Conrad, S.A., et al. (2006) Characterization of Peripheral Circadian Clocks in Adipose Tissues. Diabetes, 55, 962-970. https://doi.org/10.2337/diabetes.55.04.06.db05-0873 |
[61] | Wang, Y.X., Zhang, C.L., Yu, R.T., et al. (2004) Regulation of Muscle Fiber Type and Running Endurance by PPARdelta. PLOS Biology, 2, E294. https://doi.org/10.1371/journal.pbio.0020294 |
[62] | Gatfield, D., Le Martelot, G., Vejnar, C.E., et al. (2009) Integration of MicroRNA MiR-122 in Hepatic Circadian Gene Expression. Genes & Development, 23, 1313-1326. https://doi.org/10.1101/gad.1781009 |
[63] | Jordan, S.D., Kriebs, A., Vaughan, M., et al. (2017) CRY1/2 Selectively Repress PPARδ and Limit Exercise Capacity. Cell Metabolism, 26, 243-255.E6. https://doi.org/10.1016/j.cmet.2017.06.002 |
[64] | Challet, E., Denis, I., Rochet, V., et al. (2013) The Role of PPARβ/δ in the Regulation of Glutamatergic Signaling in the Hamster Suprachiasmatic Nucleus. Cellular and Molecular Life Sciences: CMLS, 70, 2003-2014. https://doi.org/10.1007/s00018-012-1241-9 |
[65] | Wang, N., Yang, G., Jia, Z., et al. (2008) Vascular PPARgamma Controls Circadian Variation in Blood Pressure and Heart Rate through Bmal1. Cell Metabolism, 8, 482-491. https://doi.org/10.1016/j.cmet.2008.10.009 |
[66] | Fontaine, C., Dubois, G., Duguay, Y., et al. (2003) The Orphan Nuclear Receptor Rev-Erbalpha Is a Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Target Gene and Promotes PPARgamma-Induced Adipocyte Differentiation. The Journal of Biological Chemistry, 278, 37672-37680. https://doi.org/10.1074/jbc.M304664200 |
[67] | Liu, C., Li, S., Liu, T., et al. (2007) Transcriptional Coactivator PGC-1alpha Integrates the Mammalian Clock and Energy Metabolism. Nature, 447, 477-481. https://doi.org/10.1038/nature05767 |
[68] | Wang, S., Lin, Y., Gao, L., et al. (2022) PPAR-γ Integrates Obesity and Adipocyte Clock through Epigenetic Regulation of Bmal1. Theranostics, 12, 1589-1606. https://doi.org/10.7150/thno.69054 |
[69] | Kawai, M. and Rosen, C.J. (2010) PPARγ: A Circadian Transcription Factor in Adipogenesis and Osteogenesis. Nature Reviews Endocrinology, 6, 629-636. https://doi.org/10.1038/nrendo.2010.155 |
[70] | Schwabe, R.F., Tabas, I. and Pajvani, U.B. (2020) Mechanisms of Fibrosis Development in Nonalcoholic Steatohepatitis. Gastroenterology, 158, 1913-1928. https://doi.org/10.1053/j.gastro.2019.11.311 |
[71] | Sun, X. and Harris, E.N. (2020) New Aspects of Hepatic Endothelial Cells in Physiology and Nonalcoholic Fatty Liver Disease. American Journal of Physiology Cell Physiology, 318, C1200-C1213. https://doi.org/10.1152/ajpcell.00062.2020 |
[72] | Guixé-Muntet, S., Biquard, L., Szabo, G., et al. (2022) Review Article: Vascular Effects of PPARs in the Context of NASH. Alimentary Pharmacology & Therapeutics, 56, 209-223. https://doi.org/10.1111/apt.17046 |
[73] | Beyer, A.M., De Lange, W.J., Halabi, C.M., et al. (2008) Endothelium-Specific Interference with Peroxisome Proliferator Activated Receptor Gamma Causes Cerebral Vascular Dysfunction in Response to a High-Fat Diet. Circulation Research, 103, 654-661. https://doi.org/10.1161/CIRCRESAHA.108.176339 |
[74] | Tao, L., Liu, H.R., Gao, E., et al. (2003) Antioxidative, Antinitrative, and Vasculoprotective Effects of a Peroxisome Proliferator-Activated Receptor-Gamma Agonist in Hypercholesterolemia. Circulation, 108, 2805-2811. https://doi.org/10.1161/01.CIR.0000097003.49585.5E |
[75] | Boyer-Diaz, Z., Aristu-Zabalza, P., Andrés-Rozas, M., et al. (2021) Pan-PPAR Agonist Lanifibranor Improves Portal Hypertension and Hepatic Fibrosis in Experimental Advanced Chronic Liver Disease. Journal of Hepatology, 74, 1188-1199. https://doi.org/10.1016/j.jhep.2020.11.045 |