|
基于孟德尔随机化探讨风湿系统疾病与胰腺癌风险的因果关系
|
Abstract:
目的:通过两样本孟德尔随机化的方法探究风湿系统疾病(类风湿性关节炎、骨关节炎、系统性红斑狼疮、强直性脊柱炎、痛风)与胰腺癌发病之间的因果关系,为胰腺癌的早期发现提供依据。方法:从全基因组关联分析研究的数据中分别筛出与上述5种风湿系统疾病具有强相关的独立遗传变异作为工具变量,通过孟德尔随机化分析中的逆方差加权法、MR-Egger回归分析和加权中位数法三种方法进行探讨上述5种风湿系统疾病与胰腺癌发病的因果关联。结果:逆方差加权分析法结果:类风湿性关节炎(OR = 1.182, P = 0.013)、骨关节炎(OR = 2.434, P = 0.009)、系统性红斑狼疮(OR = 1.018, P = 0.469)、强直性脊柱炎(OR = 19951683.481, P = 0.040)、痛风(OR = 23.705, P = 0.189)。MR-Egger回归分析结果:类风湿性关节炎(OR = 1.329, P = 0.018),其余四组结果P > 0.05,统计结果无统计学意义;加权中位数法结果:类风湿性关节炎(OR = 1.265, P = 0.007),其余四组结果P > 0.05,统计结果无统计学意义。敏感性分析显示研究结果稳健,异质性检验表明不存在异质性。结论:类风湿性关节炎、骨关节炎、强直性脊柱炎与胰腺癌发病存在正向因果关联,在此类患者中定期进行胰腺癌的相关筛查可有利于胰腺癌的早期发现与及时干预。
Objective: Two sample Mendelian randomization method was used to explore the causal relationship between rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, ankylosing spondylitis, gout and the incidence of pancreatic cancer, so as to provide the basis for the early detection of pancreatic cancer. Methods: From the data of genome-wide association analysis studies, independent genetic variants strongly associated with the above five rheumatic diseases were screened as instrumental variables. The causal relationship between rheumatoid arthritis, osteoarthritis, systemic lupus erythematosus, ankylosing spondylitis, gout and pancreatic cancer was investigated by using the inverse variance weighting method, MR-Egger regression analysis and weighted median method in Mendelian randomized analysis. Results: Inverse variance weighted analysis results: Rheumatoid arthritis (OR = 1.182, P = 0.013), osteoarthritis (OR = 2.434, P = 0.009), systemic lupus erythematosus (OR = 1.018, P = 0.469), ankylosing spondylitis (OR = 19951683.481, P = 0.040), gout (OR = 23.705, P = 0.189). The result of MR-Egger regression analysis: rheumatoid arthritis (OR = 1.329, P = 0.018); the results of the other four groups P > 0.05; the statistical results were not statistically significant. Weighted median method results: rheumatoid arthritis (OR = 1.265, P = 0.007); the results of the other four groups P > 0.05; statistical results were not statistically significant. Sensitivity analysis showed robust results, and heterogeneity test showed no heterogeneity. Conclusion: Rheumatoid arthritis, osteoarthritis, ankylosing spondylitis and pancreatic cancer have a positive causal association, and regular screening of pancreatic cancer in these patients can be conducive to early detection and timely intervention of pancreatic cancer.
[1] | Zhou, K., Liu, Y., Yuan, S., et al. (2023) Signalling in Pancreatic Cancer: From Pathways to Therapy. Journal of Drug Targeting, 31, 1013-1026. https://doi.org/10.1080/1061186X.2023.2274806 |
[2] | Cai, J., Chen, H., Lu, M., et al. (2021) Advances in the Epidemiology of Pancreatic Cancer: Trends, Risk Factors, Screening, and Prognosis. Cancer Letters, 520, 1-11. https://doi.org/10.1016/j.canlet.2021.06.027 |
[3] | 曹丹, 陈星, 汤晓燕, 等. 玫瑰树碱诱导胰腺癌细胞焦亡的机制[J]. 中国医科大学学报, 2023, 52(11): 965-970. |
[4] | Lin, S. (2023) DTX3L Mediated Ubiquitination of cGAS Suppresses Antitumor Immunity in Pancreatic Cancer. Biochemical and Biophysical Research Communications, 681, 106-110. https://doi.org/10.1016/j.bbrc.2023.09.073 |
[5] | Tian, J., Bai, T., Zhang, Z., et al. (2022) Progress and Prospects for Use of Cellular Immunotherapy in Pancreatic Cancer. Journal of Cancer Research and Therapeutics, 18, 1867-1875. https://doi.org/10.4103/jcrt.jcrt_976_21 |
[6] | Charoenngam, N. (2021) Vitamin D and Rheumatic Diseases: A Review of Clinical Evidence. International Journal of Molecular Sciences, 22, Article 10659. https://doi.org/10.20944/preprints202107.0579.v1 |
[7] | Rose, J. (2023) Autoimmune Connective Tissue Diseases: Systemic Lupus Erythematosus and Rheumatoid Arthritis. Immunology and Allergy Clinics of North America, 43, 613-625. https://doi.org/10.1016/j.iac.2022.10.006 |
[8] | 张克, 李凤婷, 蒋萍萍, 等. 风湿性疾病患儿父母应对方式现状及其影响因素研究[J]. 循证护理, 2022, 8(15): 2095-2100. |
[9] | 王颖, 高惠英. 脂联素介导免疫炎症机制在常见风湿性疾病中的研究进展[J]. 临床医药实践, 2023, 32(7): 517-521. |
[10] | Chang, C.C., Chang, C.W., Nguyen, P.A., et al. (2017) Ankylosing Spondylitis and the Risk of Cancer. Oncology Letters, 14, 1315-1322. https://doi.org/10.3892/ol.2017.6368 |
[11] | Smith, G.D. and Ebrahim, S. (2003) ‘Mendelian randomization’: Can Genetic Epidemiology Contribute to Understanding Environmental Determinants of Disease? International Journal of Epidemiology, 32, 1-22. https://doi.org/10.1093/ije/dyg070 |
[12] | Deng, M.G., Liu, F., Liang, Y., et al. (2023) Association between Frailty and Depression: A Bidirectional Mendelian Randomization Study. Science Advances, 9, eadi3902. https://doi.org/10.1126/sciadv.adi3902 |
[13] | Lawlor, D.A., Harbord, R.M., Sterne, J.A., et al. (2008) Mendelian Randomization: Using Genes as Instruments for Making Causal Inferences in Epidemiology. Statistics in Medicine, 27, 1133-1163. https://doi.org/10.1002/sim.3034 |
[14] | Porcu, E., Rueger, S., Lepik, K., et al. (2019) Mendelian Randomization Integrating GWAS and eQTL Data Reveals Genetic Determinants of Complex and Clinical Traits. Nature Communications, 10, Article No. 3300. https://doi.org/10.1038/s41467-019-10936-0 |
[15] | Zheng, J., Baird, D., Borges, M.C., et al. (2017) Recent Developments in Mendelian Randomization Studies. Current Epidemiology Reports, 4, 330-345. https://doi.org/10.1007/s40471-017-0128-6 |
[16] | Ou, Z., Gao, Z., Wang, Q., et al. (2023) Association between Age at First Birth and Postpartum Depression: A Two-Sample Mendelian Randomization Analysis. Heliyon, 9, e20500. https://doi.org/10.1016/j.heliyon.2023.e20500 |
[17] | Burgess, S. and Thompson, S.G. (2017) Interpreting Findings from Mendelian Randomization Using the MR-Egger Method. European Journal of Epidemiology, 32, 377-389. https://doi.org/10.1007/s10654-017-0255-x |
[18] | Verbanck, M., Chen, C.Y., Neale, B., et al. (2018) Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nature Genetics, 50, 693-698. https://doi.org/10.1038/s41588-018-0099-7 |
[19] | Morand, S., Staats, H., Creeden, J.F., et al. (2020) Molecular Mechanisms Underlying Rheumatoid Arthritis and Cancer Development and Treatment. Future Oncology, 16, 483-495. https://doi.org/10.2217/fon-2019-0722 |
[20] | Davila, E., Kang, Y.M., Park, Y.W., et al. (2005) Cell-Based Immunotherapy with Suppressor CD8 T Cells in Rheumatoid Arthritis. Journal of Immunology, 174, 7292-7301. https://doi.org/10.4049/jimmunol.174.11.7292 |
[21] | Wang, Q., Oryoji, D., Mitoma, H., et al. (2020) Methotrexate Enhances Apoptosis of Transmembrane TNF-Expressing Cells Treated with Anti-TNF Agents. Frontiers in Immunology, 11, Article 2042. https://doi.org/10.3389/fimmu.2020.02042 |
[22] | Padoan, A., Plebani, M. and Basso, D. (2019) Inflammation and Pancreatic Cancer: Focus on Metabolism, Cytokines, and Immunity. International Journal of Molecular Sciences, 20, Article 676. https://doi.org/10.3390/ijms20030676 |
[23] | Roberts, R.A. and Kimber, I. (1999) Cytokines in Non-Genotoxic Hepatocarcinogenesis. Carcinogenesis, 20, 1397-1402. https://doi.org/10.1093/carcin/20.8.1397 |
[24] | Xia, B., Chen, D., Zhang, J., et al. (2014) Osteoarthritis Pathogenesis: A Review of Molecular Mechanisms. Calcified Tissue International, 95, 495-505. https://doi.org/10.1007/s00223-014-9917-9 |
[25] | Singh, N., Baby, D., Rajguru, J.P., et al. (2019) Inflammation and Cancer. Annals of African Medicine, 18, 121-126. https://doi.org/10.4103/aam.aam_56_18 |
[26] | Khansari, N., Shakiba, Y. and Mahmoudi, M. (2009) Chronic Inflammation and Oxidative Stress as a Major Cause of Age-Related Diseases and Cancer. Recent Patents on Inflammation & Allergy Drug Discovery, 3, 73-80. https://doi.org/10.2174/187221309787158371 |
[27] | Chen, B., Li, J., He, C., et al. (2017) Role of HLA-B27 in the Pathogenesis of Ankylosing Spondylitis (Review). Molecular Medicine Reports, 15, 1943-1951. https://doi.org/10.3892/mmr.2017.6248 |
[28] | Bowness, P. (2015) HLA-B27. Annual Review of Immunology, 33, 29-48. https://doi.org/10.1146/annurev-immunol-032414-112110 |
[29] | Yuan, F., Pfeiffer, R.M., Julian-Serrano, S., et al. (2023) Autoimmune Conditions and Pancreatic Cancer Risk in Older American Adults. International Journal of Cancer, 152, 172-182. https://doi.org/10.1002/ijc.34235 |
[30] | Fazia, T., Baldrighi, G.N., Nova, A., et al. (2023) A Systematic Review of Mendelian Randomization Studies on Multiple Sclerosis. European Journal of Neuroscience, 58, 3172-3194. https://doi.org/10.1111/ejn.16088 |
[31] | Bowden, J. and Holmes, M.V. (2019) Meta-Analysis and Mendelian Randomization: A Review. Research Synthesis Methods, 10, 486-496. https://doi.org/10.1002/jrsm.1346 |