全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

胰腺癌基质细胞评分相关疾病预后特征的研究
Study on the Prognostic Characteristics of Pancreatic Cancer Related to Stromal Cell Score

DOI: 10.12677/acm.2024.1441312, PP. 2433-2443

Keywords: 基质细胞,预后模型,胰腺导管腺癌
Stromal Cell
, Prognostic Model, Pancreatic Ductal Adenocarcinoma

Full-Text   Cite this paper   Add to My Lib

Abstract:

胰腺癌是预后最差的癌症之一。改善胰腺癌患者的预后是当下研究的目标。在本研究中,我们使用“estimate”软件包分析了胰腺癌的表达数据,计算了肿瘤微环境中基质细胞浸润的含量,并根据基质细胞得分的差异总结获得了差异表达基因(differentially expressed genes, DEGs)。这些DEGs被用于构建胰腺癌预后模型。本研究发现,模型中的风险分数能很好地区分不同特征胰腺癌患者的预后。风险分数与一些免疫细胞和免疫功能密切相关。我们的模型在胰腺癌研究中具有广阔的应用前景。
Pancreatic cancer is one of the worst prognosis cancers. It is the goal of researchers to improve the prognosis of patients with pancreatic cancer. In our study, we used “estimate” package to analyze the expression data of pancreatic adenocarcinoma, calculated the content of stromal cell infiltration in the tumor microenvironment, and obtained the differentially expressed genes according to the difference of stromal cell score. These differentially expressed genes are used to construct a prognostic model for pancreatic cancer. We found that the riskScore in our model can well distinguish the prognosis of patients with different characteristics. The riskScore was closely related to some immune cells and immune function. Our model has broad application prospects in the study of pancreatic cancer.

References

[1]  Lu, H., Niu, F., Liu, F., et al. (2017) Elevated Glypican-1 Expression Is Associated with an Unfavorable Prognosis in Pancreatic Ductal Adenocarcinoma. Cancer Medicine, 6, 1181-1191.
https://doi.org/10.1002/cam4.1064
[2]  Ren, B., Cui, M., Yang, G., et al. (2018) Tumor Microenvironment Participates in Metastasis of Pancreatic Cancer. Molecular Cancer, 17, Article No. 108.
https://doi.org/10.1186/s12943-018-0858-1
[3]  Jiang, Z., Zheng, X., Li, M., et al. (2023) Improving the Prognosis of Pancreatic Cancer: Insights from Epidemiology, Genomic Alterations, and Therapeutic Challenges. Frontiers in Medicine, 17, 1135-1169.
https://doi.org/10.1007/s11684-023-1050-6
[4]  Ho, W.J., Jaffee, E.M. and Zheng, L. (2020) The Tumour Microenvironment in Pancreatic Cancer—Clinical Challenges and Opportunities. Nature Reviews Clinical Oncology, 17, 527-540.
https://doi.org/10.1038/s41571-020-0363-5
[5]  Halbrook, C.J., Lyssiotis, C.A., Pasca di Magliano, M., et al. (2023) Pancreatic Cancer: Advances and Challenges. Cell, 186, 1729-1754.
https://doi.org/10.1016/j.cell.2023.02.014
[6]  Frappart, P.O. and Hofmann, T.G. (2020) Pancreatic Ductal Adenocarcinoma (PDAC) Organoids: The Shining Light at the End of the Tunnel for Drug Response Prediction and Personalized Medicine. Cancers, 12, Article 2750.
https://doi.org/10.3390/cancers12102750
[7]  Hegde, S., Krisnawan, V.E., Herzog, B.H., et al. (2020) Dendritic Cell Paucity Leads to Dysfunctional Immune Surveillance in Pancreatic Cancer. Cancer Cell, 37, 289-307.e289.
https://doi.org/10.1016/j.ccell.2020.02.008
[8]  Yang, M.W., Tao, L.Y., Jiang, Y.S., et al. (2020) Perineural Invasion Reprograms the Immune Microenvironment through Cholinergic Signaling in Pancreatic Ductal Adenocarcinoma. Cancer Research, 80, 1991-2003.
https://doi.org/10.1158/0008-5472.CAN-19-2689
[9]  Choueiry, F., Torok, M., Shakya, R., et al. (2020) CD200 Promotes Immunosuppression in the Pancreatic Tumor Microenvironment. The Journal for ImmunoTherapy of Cancer, 8, e000189.
https://doi.org/10.1136/jitc-2019-000189
[10]  Xiong, Y., Si, Y., Feng, Y., et al. (2021) Prognostic Value of Lipid Metabolism-Related Genes in Head and Neck Squamous Cell Carcinoma. Immunity, Inflammation and Disease, 9, 196-209.
https://doi.org/10.1002/iid3.379
[11]  Ferrucci, V., Asadzadeh, F., Collina, F., et al. (2021) Prune-1 Drives Polarization of Tumor-Associated Macrophages (TAMs) within the Lung Metastatic Niche in Triple-Negative Breast Cancer. iScience, 24, Article 101938.
https://doi.org/10.1016/j.isci.2020.101938
[12]  Li, C.W., Lim, S.O., Chung, E.M., et al. (2018) Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated PD-L1. Cancer Cell, 33, 187-201.e110.
[13]  Sun, Y., Liu, T., Xian, L., et al. (2020) B3GNT3, a Direct Target of miR-149-5p, Promotes Lung Cancer Development and Indicates Poor Prognosis of Lung Cancer. Cancer Management and Research, 12, 2381-2391.
https://doi.org/10.2147/CMAR.S236565
[14]  Hsien Lai, S., Zervoudakis, G., Chou, J., et al. (2020) PDE4 Subtypes in Cancer. Oncogene, 39, 3791-3802.
https://doi.org/10.1038/s41388-020-1258-8
[15]  Bao, Z., Feng, Y., Wang, H., et al. (2014) Integrated Analysis Using Methylation and Gene Expression Microarrays Reveals PDE4C as a Prognostic Biomarker in Human Glioma. Oncology Reports, 32, 250-260.
https://doi.org/10.3892/or.2014.3176
[16]  Zhai, L., Ladomersky, E., Lenzen, A., et al. (2018) IDO1 in Cancer: A Gemini of Immune Checkpoints. Cellular & Molecular Immunology, 15, 447-457.
https://doi.org/10.1038/cmi.2017.143
[17]  Cheong, J.E. and Sun, L. (2018) Targeting the IDO1/TDO2-KYN-AhR Pathway for Cancer Immunotherapy—Challenges and Opportunities. Trends in Pharmacological Sciences, 39, 307-325.
https://doi.org/10.1016/j.tips.2017.11.007
[18]  Zhang, Z., Wang, Q., Zhang, M., et al. (2021) Comprehensive Analysis of the Transcriptome-Wide m6A Methylome in Colorectal Cancer by MeRIP Sequencing. Epigenetics, 16, 425-435.
https://doi.org/10.1080/15592294.2020.1805684
[19]  Zhang, Q., Li, T., Wang, Z., et al. (2020) lncRNA NR2F1-AS1 Promotes Breast Cancer Angiogenesis through Activating IGF-1/IGF-1R/ERK Pathway. Journal of Cellular and Molecular Medicine, 24, 8236-8247.
https://doi.org/10.1111/jcmm.15499
[20]  Zhang, Z. and Zhang, X. (2021) Identification of m6A-Related Biomarkers Associated with Prognosis of Colorectal Cancer. Medical Science Monitor, 27, e932370.
https://doi.org/10.12659/MSM.932370
[21]  Zhao, R., Peng, C., Song, C., et al. (2020) BICC1 as a Novel Prognostic Biomarker in Gastric Cancer Correlating with Immune Infiltrates. International Immunopharmacology, 87, Article 106828.
https://doi.org/10.1016/j.intimp.2020.106828
[22]  Wang, H., Deng, Q., Lv, Z., et al. (2023) Retraction Note: N6-Methyladenosine Induced Mir-143-3p Promotes the Brain Metastasis of Lung Cancer via Regulation of VASH1. Molecular Cancer, 22, Article No. 132.
https://doi.org/10.1186/s12943-023-01840-9
[23]  Marcussen, M., S?nderk?r, M., B?dker, J.S., et al. (2018) Oral Mucosa Tissue Gene Expression Profiling before, during, and after Radiation Therapy for Tonsil Squamous Cell Carcinoma. PLOS ONE, 13, e0190709.
https://doi.org/10.1371/journal.pone.0190709
[24]  Saito, Y., Li, L., Coyaud, E., et al. (2019) LLGL2 Rescues Nutrient Stress by Promoting Leucine Uptake in ER Breast Cancer. Nature, 569, 275-279.
https://doi.org/10.1038/s41586-019-1126-2
[25]  Adams, E.J., Karthaus, W.R., Hoover, E., et al. (2019) FOXA1 Mutations Alter Pioneering Activity, Differentiation and Prostate Cancer Phenotypes. Nature, 571, 408-412.
https://doi.org/10.1038/s41586-019-1318-9
[26]  Liang, E., Lu, Y., Shi, Y., et al. (2020) MYEOV Increases HES1 Expression and Promotes Pancreatic Cancer Progression by Enhancing SOX9 Transactivity. Oncogene, 39, 6437-6450.
https://doi.org/10.1038/s41388-020-01443-4
[27]  Malik, A.S., Boyko, O., Aktar, N., et al. (2001) A Comparative Study of MR Imaging Profile of Titanium Pedicle Screws. Acta Radiologica, 42, 291-293.
https://doi.org/10.1080/028418501127346846

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133