全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Distributed Event-Triggered Approach for Decentralized Multi-Period Portfolio Optimization via the Alternating Direction Method of Multipliers

DOI: 10.4236/ajibm.2024.144030, PP. 590-602

Keywords: Decentralized Portfolio Optimization, Alternating Direction Method of Multipliers (ADMM), Multi-Period Portfolio, Event-Triggered Control

Full-Text   Cite this paper   Add to My Lib

Abstract:

With the advent of the era of big data and the increasing demand for privacy protection, decentralized portfolio optimization has garnered significant attention in practical implementations. This paper addresses the problem of decentralized portfolio optimization within the mean-variance portfolio framework. A decentralized multi-period portfolio optimization model is established using the alternating direction method of multipliers (ADMM). The methodology incorporates a distributed event-triggered approach to imitate the professional investment manager for each sub-portfolio, where each investment manager independently triggers the rebalancing moment of the respective sub-portfolio. Empirical analysis is conducted on four well-known stock trading markets to demonstrate the performance of the decentralized multi-period portfolio optimization model.

References

[1]  Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J. et al. (2011). Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and Trends® in Machine Learning, 3, 1-122.
https://doi.org/10.1561/2200000016
[2]  Bredies, K., & Lorenz, D. A. (2008). Linear Convergence of Iterative Soft Thresholding. Journal of Fourier Analysis and Applications, 14, 813-837.
https://doi.org/10.1007/s00041-008-9041-1
[3]  Cao, X., & Basar, T. (2020). Decentralized Online Convex Optimization with Event-Triggered Communications. IEEE Transactions on Signal Processing, 69, 284-299.
https://doi.org/10.1109/TSP.2020.3044843
[4]  Cremers, M., Ferreira, M. A., Matos, P., & Starks, L. (2016). Indexing and Active Fund Management: International Evidence. Journal of Financial Economics, 120, 539-560.
https://doi.org/10.1016/j.jfineco.2016.02.008
[5]  Dai, H., Fang, X., & Chen, W. (2020). Distributed Event-Triggered Algorithms for a Class of Convex Optimization Problems over Directed Networks. Automatica, 122, Article ID: 109256.
https://doi.org/10.1016/j.automatica.2020.109256
[6]  Dhaini, M., & Mansour, N. (2021). Squirrel Search Algorithm for Portfolio Optimization. Expert Systems with Applications, 178, Article ID: 114968.
https://doi.org/10.1016/j.eswa.2021.114968
[7]  Ding, L., Han, Q.-L., Ge, X., & Zhang, X.-M. (2017). An Overview of Recent Advances in Event-Triggered Consensus of Multiagent Systems. IEEE Transactions on Cybernetics, 48, 1110-1123.
https://doi.org/10.1109/TCYB.2017.2771560
[8]  Ge, X., Han, Q.-L., & Wang, Z. (2017). A Dynamic Event-Triggered Transmission Scheme for Distributed Set-Membership Estimation over Wireless Sensor Networks. IEEE Transactions on Cybernetics, 49, 171-183.
https://doi.org/10.1109/TCYB.2017.2769722
[9]  Gupta, P., Mehlawat, M. K., & Khan, A. Z. (2021). Multi-Period Portfolio Optimization Using Coherent Fuzzy Numbers in a Credibilistic Environment. Expert Systems with Applications, 167, Article ID: 114135.
https://doi.org/10.1016/j.eswa.2020.114135
[10]  Hsu, P.-H., Han, Q., Wu, W., & Cao, Z. (2018). Asset Allocation Strategies, Data Snooping, and the 1/n Rule. Journal of Banking & Finance, 97, 257-269.
https://doi.org/10.1016/j.jbankfin.2018.09.021
[11]  Lee, M., Kwon, R. H., & Lee, C.-G. (2016). Bounds for Portfolio Weights in Decentralized Asset Allocation. INFOR: Information Systems and Operational Research, 54, 344-354.
https://doi.org/10.1080/03155986.2016.1231493
[12]  Leung, M.-F., Wang, J., & Che, H. (2022). Cardinality-Constrained Portfolio Selection via Two-Timescale Duplex Neurodynamic Optimization. Neural Networks, 153, 399-410.
https://doi.org/10.1016/j.neunet.2022.06.023
[13]  Leung, M.-F., Wang, J., & Li, D. (2021). Decentralized Robust Portfolio Optimization Based on Cooperative-Competitive Multiagent Systems. IEEE Transactions on Cybernetics, 52, 12785-12794.
https://doi.org/10.1109/TCYB.2021.3088884
[14]  Lin, Z., Li, H., & Fang, C. (2022). Alternating Direction Method of Multipliers for Machine Learning. Springer.
https://doi.org/10.1007/978-981-16-9840-8
[15]  Markowitz, H. (1952). Portfolio Selection. Journal of Finance, 7, 77-91.
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
[16]  Merton, R. C. (1969). Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case. The Review of Economics and Statistics, 51, 247-257.
https://doi.org/10.2307/1926560
[17]  Mossin, J. (1968). Optimal Multiperiod Portfolio Policies. The Journal of Business, 41, 215-229.
https://doi.org/10.1086/295078
[18]  Nesaz, H. H., Jasemi, M., & Monplaisir, L. (2020). A New Methodology for Multi-Period Portfolio Selection Based on the Risk Measure of Lower Partial Moments. Expert Systems with Applications, 144, Article ID: 113032.
https://doi.org/10.1016/j.eswa.2019.113032
[19]  Samuelson, P. A. (1975). Lifetime Portfolio Selection by Dynamic Stochastic Programming. In W. T. Ziemba, & R. G. Vickson (Eds.), Stochastic Optimization Models in Finance (pp. 517-524). Elsevier.
https://doi.org/10.1016/B978-0-12-780850-5.50044-7
[20]  Sharpe, W. F. (1981). Decentralized Investment Management. The Journal of Finance, 36, 217-234.
https://doi.org/10.1111/j.1540-6261.1981.tb00436.x
[21]  Sharpe, W. F. (1998). The Sharpe Ratio. StreetwiseThe Best of the Journal of Portfolio Management, 3, 169-185.
https://doi.org/10.1515/9781400829408-022
[22]  Shi, Z.-L., Li, X. P., Leung, C.-S., & So, H. C. (2022). Cardinality Constrained Portfolio Optimization via Alternating Direction Method of Multipliers. IEEE Transactions on Neural Networks and Learning Systems, 35, 2901-2909.
[23]  Skomorokhov, F., Wang, J., Ovchinnikov, G., Burnaev, E., & Oseledets, I. (2023). An Event-Triggered Iteratively Reweighted Convex Optimization Approach to Multi-Period Portfolio Selection. Expert Systems with Applications, 216, Article ID: 119427.
https://doi.org/10.1016/j.eswa.2022.119427
[24]  Wang, J., & Gan, X. (2023). Neurodynamics-Driven Portfolio Optimization with Targeted Performance Criteria. Neural Networks, 157, 404-421.
https://doi.org/10.1016/j.neunet.2022.10.018
[25]  Wei, J., Yang, Y., Jiang, M., & Liu, J. (2021). Dynamic Multi-Period Sparse Portfolio Selection Model with Asymmetric Investors’ Sentiments. Expert Systems with Applications, 177, Article ID: 114945.
https://doi.org/10.1016/j.eswa.2021.114945
[26]  Zeng, X., Yao, J., & Xia, H. (2024). Convergence of Bregman Alternating Direction Method of Multipliers for Nonseparable Nonconvex Objective with Linear Constraints. Journal of Applied Mathematics and Physics, 12, 639-660.
https://doi.org/10.4236/jamp.2024.122042
[27]  Zhao, M., & Liu, J. (2021). Robust Clustering with Sparse Corruption via 2, 1, 1 Norm Constraint and Laplacian Regularization. Expert Systems with Applications, 186, Article ID: 115704.
https://doi.org/10.1016/j.eswa.2021.115704

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133