全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Enhancing Precision in Radiotherapy Delivery: Validating Monte Carlo Simulation Models for 6 MV Elekta Synergy Agility LINAC Photon Beam Using Two Models of the GAMOS Code

DOI: 10.4236/wjnst.2024.142009, PP. 146-163

Keywords: GAMOS, Monte Carlo, LINAC, Radiotherapy, Dose Distribution, Phase Space, Gamma Index, 6 MV Photon Beam

Full-Text   Cite this paper   Add to My Lib

Abstract:

The most crucial requirement in radiation therapy treatment planning is a fast and accurate treatment planning system that minimizes damage to healthy tissues surrounding cancer cells. The use of Monte Carlo toolkits has become indispensable for research aimed at precisely determining the dose in radiotherapy. Among the numerous algorithms developed in recent years, the GAMOS code, which utilizes the Geant4 toolkit for Monte Carlo simula-tions, incorporates various electromagnetic physics models and multiple scattering models for simulating particle interactions with matter. This makes it a valuable tool for dose calculations in medical applications and throughout the patient’s volume. The aim of this present work aims to vali-date the GAMOS code for the simulation of a 6 MV photon-beam output from the Elekta Synergy Agility linear accelerator. The simulation involves mod-eling the major components of the accelerator head and the interactions of the radiation beam with a homogeneous water phantom and particle information was collected following the modeling of the phase space. This space was po-sitioned under the X and Y jaws, utilizing three electromagnetic physics mod-els of the GAMOS code: Standard, Penelope, and Low-Energy, along with three multiple scattering models: Goudsmit-Saunderson, Urban, and Wentzel-VI. The obtained phase space file was used as a particle source to simulate dose distributions (depth-dose and dose profile) for field sizes of 5 × 5 cm2 and 10 × 10 cm2 at depths of 10 cm and 20 cm in a water phantom, with a source-surface distance (SSD) of 90 cm from the target. We compared the three electromagnetic physics models and the three multiple scattering mod-els of the GAMOS code to experimental results. Validation of our results was performed using the gamma index, with an acceptability criterion of 3% for the dose difference (DD) and 3 mm for the distance-to-agreement (DTA). We achieved agreements of 94% and 96%, respectively, between simulation and experimentation for the three electromagnetic physics models and three mul-tiple scattering models, for field sizes of 5 × 5 cm2 and 10 × 10 cm2 for depth-dose curves. For dose profile curves, a good agreement of 100% was found between simulation and experimentation for the three electromagnetic physics models, as well as for the three multiple scattering models for a field size of 5 × 5 cm2 at 10 cm and 20 cm depths. For a field size of 10 × 10

References

[1]  Knoos, T., Ahnesjo, A., Nilsson, P. and Weber, L. (1995) Limitations of a Pencil Beam Approach to Photon Dose Calculations in Lung Tissue. Physics in Medicine & Biology, 40, 1411-1420.
https://doi.org/10.1088/0031-9155/40/9/002
[2]  Rodrigues, P., Trindade, A., Peralta, L., Alves, C., Chaves, A. and Lopes, M.C. (2004) Application of Geant4 Radiation Transport Toolkit to Dose Calculations in Anthropomorphic Phantoms. Applied Radiation and Isotopes, 61, 1451-1461.
https://doi.org/10.1016/j.apradiso.2004.05.073
[3]  Grevillot, L., Frisson, T., Maneval, D., Zahra, N., Badel, J.N. and Sarrut, D. (2011) Simulation of a 6 MV Elekta Precise Linac Photon Beam Using GATE/Geant4. Physics in Medicine & Biology, 56, 903-918.
https://doi.org/10.1088/0031-9155/56/4/002
[4]  Zhao, Y., Qi, G., Yin, G., Wang, X., Wang, P., Li, J., Liao, X., et al. (2014) A Clinical Study of Lung Cancer Dose Calculation Accuracy with Monte Carlo Simulation. Radiation Oncology, 9, Article 287.
http://www.ro-journal.com/content/9/1/287
[5]  Agostinelli, S., Allison, J., Amako, K.A., Apostolakis, J., Araujo, H., Arce, P., et al. (2003) Geant4—A Simulation Toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506, 250-303.
https://doi.org/10.1016/S0168-9002(03)01368-8
[6]  Allison, J., Amako, K., Apostolakis, J.E.A., Araujo, H.A.A.H., Dubois, P.A., Asai, M.A.A.M., Yoshida, H.A.Y.H., et al. (2006) Geant4 Developments and Applications. IEEE Transactions on Nuclear Science, 53, 270-278.
https://doi.org/10.1109/TNS.2006.869826
[7]  Thiam, C.O. (2003) Monte-Carlo Simulation of the SL-ELEKTA-20 Medical Linear Accelerator. Dosimetric Study of a Water Phantom; Simulation Monte Carlo de l’accelerateur lineaire clinique SL-ELEKTA 20. Etude dosimetrique dans un fantome d’eau. Ph.D. Thesis, Universite Blaise-Pascal, Clermont-Ferrand.
https://www.osti.gov/etdeweb/biblio/20702725
[8]  Visvikis, D. (2014) Simulation Monte Carlo GATE en radiothérapie pour des faisceaux complexes et dynamiques en IMRT. Ph.D. Thesis, Université de Bretagne occidentale, Brest.
https://www.researchgate.net/profile/Saadia-Benhalouche/publication/273888447_GATE_Mote_Carlo_simulation_in_radiation_therapy_for_complex_and_dynamic_beams_in_IMRT/links/550fe1ed0cf2ac2905af586e/GATE-Monte-Carlo-simulation-in-radiation-therapy-for-complex-and-dynamic-beams-in-IMRT.pdf
[9]  Petti, P.L., Goodman, M.S., Sisterson, J.M., Biggs, P.J., Gabriel, T.A. and Mohan, R. (1983) Sources of Electron Contamination for the Clinac-35 25-MV Photon Beam. Medical Physics, 10, 856-861.
https://doi.org/10.1118/1.595348
[10]  Mohan, R., Chui, C. and Lidofsky, L. (1985) Energy and Angular Distributions of Photons from Medical Linear Accelerators. Medical Physics, 12, 592-597.
https://doi.org/10.1118/1.595680
[11]  Sheikh-Bagheri, D. and Rogers, D.W.O. (2002) Sensitivity of Megavoltage Photon Beam Monte Carlo Simulations to Electron Beam and Other Parameters. Medical Physics, 29, 379-390.
https://doi.org/10.1118/1.1446109
[12]  Lu, S. and Deng, H. (2022) Monte Carlo Modeling and Verification of 6 MV Linear Accelerator. World Journal of Engineering and Technology, 10, 213-223.
https://doi.org/10.4236/wjet.2022.102012
[13]  Taneja, S., Bartol, L.J., Culberson, W. and De Werd, L.A. (2020) Measurement of the Energy Spectrum of a 6 MV Linear Accelerator Using Compton Scattering Spectroscopy and Monte Carlo-Generated Corrections. International Journal of Medical Physics, Clinical Engineering and Radiation Oncology, 9, 186-200.
https://doi.org/10.4236/ijmpcero.2020.94017
[14]  Cortes-Giraldo, M.A., Arce, P., Salguero, J., Gallardo, M.I., Quesada, J.M., Leal, A. and Arráns, R. (2008) GAMOS/Geant4 Validation in a Siemens PRIMUS Linac. Proceedings of the 2008 IEEE Nuclear Science Symposium Conference Record, Dresden, 19-25 October 2008, 1-5.
https://grupo.us.es/geterus/images/pdf/fisica_medica/manuscrito_dresden08.pdf
[15]  Arce, P. and Lagares, J.I. (2018) CPU Time Optimization and Precise Adjustment of the Geant4 Physics Parameters for a VARIAN 2100 C/D Gamma Radiotherapy Linear Accelerator Simulation Using GAMOS. Physics in Medicine & Biology, 63, Article 035007.
https://doi.org/10.1088/1361-6560/aaa2b0
[16]  Kandemir, R., Özsoykal, İ. and AkgüngÖr, K. (2023) The Software with a Graphical User Interface for GAMOS: Basic Training and an Educational Tool for Medical Physicists. Polish Journal of Medical Physics and Engineering, 29, 42-49.
https://intapi.sciendo.com/pdf/10.2478/pjmpe-2023-0005
[17]  Arce, P., Rato, P., Canadas, M. and Lagares, J.I. (2008) GAMOS: A Geant4-Based Easy and Flexible Framework for Nuclear Medicine Applications. 2008 IEEE Nuclear Science Symposium Conference Record, Dresden, 19-25 October 2008, 3162-3168.
https://doi.org/10.1109/NSSMIC.2008.4775023
[18]  Arce, P., Lagares, J.I., Harkness, L., Pérez-Astudillo, D., Cañadas, M., Rato, P., Díaz, A., et al. (2014) GAMOS: A Framework to Do Geant4 Simulations in Different Physics Fields with an User-Friendly Interface. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 735, 304-313.
https://doi.org/10.1016/j.nima.2013.09.036
[19]  Kawrakow, I. and Rogers, D.W.O. (2001) The EGSnrc System, a Status Report. In Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications: Proceedings of the Monte Carlo 2000 Conference, Lisbon, 23-26 October 2000, Springer, Berlin, Heidelberg, 135-140.
https://people.physics.carleton.ca/~drogers/pubs/papers/KR01.pdf
https://doi.org/10.1007/978-3-642-18211-2_23
[20]  Nelson, W.R., Hirayama, H. and Rogers, D.W.D. (1985) EGS4 Code System. Stanford Linear Accelerator Center, Menlo Park.
https://www.osti.gov/biblio/6137659
[21]  Seltzer, S.M. (1991) Electron-Photon Monte Carlo Calculations: The ETRAN Code. International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, 42, 917-941.
https://doi.org/10.1016/0883-2889(91)90050-B
[22]  Briesmeister, J.F. (2000) MCNPTM—A General Monte Carlo N-particle Transport Code. Los Alamos National Laboratory, Los Alamos.
https://s3.cern.ch/inspire-prod-files-7/78c669e8d3bb59ccf6fb868a6061450c
[23]  Issy-les-Moulineaux, F. (2001) PENELOPE—A Code System for Monte Carlo Simulation of Electron and Photon Transport.
https://www.oecd-nea.org/upload/docs/application/pdf/2019-12/penelope-2001.pdf
[24]  Jan, S., Santin, G., Strul, D., Staelens, S., Assié, K., Autret, D., Morel, C., et al. (2004) GATE: A Simulation Toolkit for PET and SPECT. Physics in Medicine & Biology, 49, 4543-4561.
https://doi.org/10.1088/0031-9155/49/19/007
[25]  GAMOS (2020) GAMOS.6.2.0 User’s Guide.
https://fismed.ciemat.es/GAMOS/gamos_userguide.php
[26]  International Atomic Energy Agency (IAEA). Nuclear Data Section.
https://www-nds.iaea.org/phsp/phsp.htmlx
[27]  Low, D.A., Harms, W.B., Mutic, S. and Purdy, J.A. (1998) A Technique for the Quantitative Evaluation of Dose Distributions. Medical Physics, 25, 656-661.
https://doi.org/10.1118/1.598248
[28]  Low, D.A. and Dempsey, J.F. (2003) Evaluation of the Gamma Dose Distribution Comparison Method. Medical Physics, 30, 2455-2464.
https://doi.org/10.1118/1.1598711

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133