全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于比值法对高维时间序列因子模型中因子个数的实证分析——以美国宏观经济数据为例
Empirical Analysis of the Number of Factors in High-Dimensional Time Series Factor Models Based on the Ratio Method—Taking US Macroeconomic Data as an Example

DOI: 10.12677/sa.2024.132049, PP. 496-503

Keywords: 宏观经济,因子模型,大维度,比值估计,因子个数
Macroeconomics
, Factor Model, Large Dimension, Ratio Estimate, The Number of Factors

Full-Text   Cite this paper   Add to My Lib

Abstract:

经济关系民生,代表一个国家的生产力水平。宏观经济是国家经济的总体表现和指导方向,直接影响着国家的发展和稳定。宏观经济数据分析是理解经济运行机制、指导政策制定和实施、支持企业战略规化以及风险管理的重要工具,对于实现经济稳定增长和可持续增长至关重要。本文采用高维时间序列因子模型,对美国宏观经济数据进行降维分析,在ER、CR、TCR、GR四种比值估计器下,估计公共因子的个数。估计结果显示,ER、GR估计器识别出的因子个数为2,CR、TCR估计器识别出的因子个数为3。通过AIC和BIC准则对估计结果进行评估,发现CR、TCR估计器识别出的因子个数结果更为准确,将3个公共因子分别解释为GDP、就业与失业、消费价格指数和信心指数,能够更好地对宏观经济数据进行解释,进而了解国家的经济状况。
The economy directly affects people’s livelihoods and represents a country’s level of productivity. Macroeconomics reflects the overall performance and guides principles of a nation’s economy, directly impacting its development and stability. Analyzing macroeconomic data is a crucial tool for understanding economic mechanisms, guiding policy formulation and implementation, supporting strategic planning for businesses, and managing risks. It is vital for achieving both stable and sustainable economic growth. In this study, a high-dimensional time series factor model is employed to conduct dimensionality reduction analysis on macroeconomic data from the United States. Using four ratio estimators, ER, CR, TCR, and GR, the number of common factors is estimated. The results indicate that the ER and GR estimators identify two common factors, while the CR and TCR estimators identify three. Evaluation based on AIC and BIC criteria suggests that the CR and TCR estimators provide more accurate results in identifying the number of factors. These three common factors are interpreted as GDP, employment and unemployment, and consumer price and confidence indices, offering better insights into macroeconomic data and understanding the country’s economic conditions.

References

[1]  陆晓明. 美联储货币政策对家庭财富和分配的影响及其宏观经济意义[J]. 开发性金融研究, 2023(6): 14-26.
[2]  邵延晟. 货币政策冲击对中国宏观经济的影响研究[D]: [硕士学位论文]. 沈阳: 沈阳工业大学, 2022.
[3]  蔡应艳. 宏观之力: 政策如何影响经济增长的轨迹[J]. 中国商人, 2024(2): 120-121.
[4]  Lam, C. and Yao, Q. (2012) Factor Modeling for High-Dimensional Time Series: Inference for the Number of Factors. The Annals of Statistics, 40, 694-726.
https://doi.org/10.1214/12-AOS970
[5]  Ahn, S.C. and Horenstein, A.R. (2013) Eigenvalue Ratio Test for the Number of Factors. Econometrica, 81, 1203-1227.
https://doi.org/10.3982/ECTA8968
[6]  Xia, Q., Liang, R. and Wu, J. (2017) Transformed Contribution Ratio Test for the Number of Factors in Static Approximate Factor Models. Computational Statistics & Data Analysis, 112, 235-241.
https://doi.org/10.1016/j.csda.2017.03.005
[7]  Xia, Q., Liang, R., Wu, J., et al. (2018) Determining the Number of Factors for High-Dimensional Time Series. Statistics and Its Interface, 11, 307-316.
https://doi.org/10.4310/SII.2018.v11.n2.a8
[8]  Chamberlain, G. and Rothschild, M. (1983) Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets. Econometrica: Journal of the Econometric Society, 51, 1281-1304.
https://doi.org/10.2307/1912275
[9]  Forni, M., Hallin, M., Lippi, M., et al. (2004) THE Generalized Dynamic Factor Model Consistency and Rates. Journal of Econometrics, 119, 231-255.
https://doi.org/10.1016/S0304-4076(03)00196-9
[10]  王学民. 应用多元分析[M]. 上海: 上海财经大学出版社, 2004: 27-28.
[11]  张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社有限公司, 2004: 47-48.
[12]  易丹辉, 王燕. 应用时间序列分析[M]. 北京: 中国人民大学出版社, 2019: 25-26.
[13]  Bai, J. and Ng, S. (2002) Determining the Number of Factors in Approximate Factor Models. Econometrica, 70, 191-221.
https://doi.org/10.1111/1468-0262.00273

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133