|
心肌纤维化中人参皂苷Rg1和分化抑制因子-2的作用
|
Abstract:
心血管疾病是影响全球预期寿命的重要因素,心肌纤维化是心血管疾病终末期的基础病理表现,也是心血管疾病的加重因素。中医药改善心肌纤维化效果显著,人参皂苷Rg1可通过多种机制减轻心肌纤维化。分化抑制因子2 (ID2)是多脏器纤维化的负性调控因子,其表达增高对肝、肺、肾小管等多组织纤维化起减轻作用。本文对人参皂苷Rg1改善心肌纤维化和Id2与心肌纤维化关系进行综述,为基于Id2靶点的中药干预提供思路。
Cardiovascular disease is an important factor affecting global life expectancy, and myocardial fibrosis is the underlying pathological manifestation of end-stage cardiovascular disease and an aggravating factor of cardiovascular disease. Traditional Chinese medicine is effective in improving myocardial fibrosis, and ginsenoside Rg1 can reduce myocardial fibrosis through multiple mechanisms. Inhibitor of differentiation 2 (ID2) is a negative regulator of multi-organ fibrosis, and its increased expression plays an attenuating role in multi-tissue fibrosis such as liver, lung, and renal tubule. In this paper, ginsenoside Rg1 ameliorates myocardial fibrosis and the relationship between Id2 and myocardial fibrosis are reviewed to provide ideas for traditional Chinese medicine interventions based on Id2 targets.
[1] | Murtha, L.A., Schuliga, M.J., Mabotuwana, N.S., et al. (2017) The Processes and Mechanisms of Cardiac and Pulmonary Fibrosis. Frontiers in Physiology, 8, Article 777. https://doi.org/10.3389/fphys.2017.00777 |
[2] | 《中国心血管健康与疾病报告2022》编写组. 《中国心血管健康与疾病报告2022》概述[J]. 中国心血管病研究, 2023, 21(7): 577-600. |
[3] | 孙亚欣, 尹永杰, 杨文, 张树华. 缺血性心脏病心肌重构的病理基础[J]. 中国实验诊断学, 2005, 9(1): 56-57. |
[4] | 李丽娜, 杨敏福. 心血管成纤维细胞显像的现状和展望[J]. 首都医科大学学报, 2024, 45(1): 46-51. |
[5] | Park, S., Nguyen, N.B., Pezhouman, A., et al. (2019) Cardiac Fibrosis: Potential Therapeutic Targets. Translational Research, 209, 121-137. https://doi.org/10.1016/j.trsl.2019.03.001 |
[6] | Chen, X., Yang, Q., Bai, W., et al. (2022) Dapagliflozin Attenuates Myocardial Fibrosis by Inhibiting the TGF-β1/Smad Signaling Pathway in a Normoglycemic Rabbit Model of Chronic Heart Failure. Frontiers in Pharmacology, 13, Article 873108. https://doi.org/10.3389/fphar.2022.873108 |
[7] | Ponikowska, B., Iwanek, G., Zdanowicz, A., et al. (2022) Biomarkers of Myocardial Injury and Remodeling in Heart Failure. Journal of Personalized Medicine, 12, Article 799. https://doi.org/10.3390/jpm12050799 |
[8] | Gotschy, A., Jordan, S., Stoeck, C.T., et al. (2023) Diffuse Myocardial Fibrosis Precedes Subclinical Functional Myocardial Impairment and Provides Prognostic Information in Systemic Sclerosis. European Heart Journal-Cardiovascular Imaging, 24, 373-382. https://doi.org/10.1093/ehjci/jeac094 |
[9] | Li, X., Yang, Y., Chen, S., et al. (2021) Epigenetics-Based Therapeutics for Myocardial Fibrosis. Life Sciences, 271, Article 119186. https://doi.org/10.1016/j.lfs.2021.119186 |
[10] | López, B., Ravassa, S., Moreno, M.U., et al. (2021) Diffuse Myocardial Fibrosis: Mechanisms, Diagnosis and Therapeutic Approaches. Nature Reviews Cardiology, 18, 479-498. https://doi.org/10.1038/s41569-020-00504-1 |
[11] | Kanisicak, O., Khalil, H., Ivey, M.J., et al. (2016) Genetic Lineage Tracing Defines Myofibroblast Origin and Function in the Injured Heart. Nature Communications, 7, Article No. 12260. https://doi.org/10.1038/ncomms12260 |
[12] | Umbarkar, P., Ejantkar, S., Tousif, S., et al. (2021) Mechanisms of Fibroblast Activation and Myocardial Fibrosis: Lessons Learned from FB-Specific Conditional Mouse Models. Cells, 10, Article 2412. https://doi.org/10.3390/cells10092412 |
[13] | 杨晓利, 瞿惠燕, 戎靖枫, 等. 心肌纤维化发病机制的研究进展[J]. 中西医结合心脑血管病杂志, 2020, 18(14): 2255-2258. |
[14] | Ma, Z.G., Yuan, Y.P., Wu, H.M., et al. (2018) Cardiac Fibrosis: New Insights into the Pathogenesis. International Journal of Biological Sciences, 14, 1645-1657. https://doi.org/10.7150/ijbs.28103 |
[15] | Li, P.F., He, R.H., Shi, S.B., et al. (2019) Modulation of MiR-10a-Mediated TGF-β1/Smads Signaling Affects Atrial Fibrillation-Induced Cardiac Fibrosis and Cardiac Fibroblast Proliferation. Bioscience Reports, 39, BSR20181931. https://doi.org/10.1042/BSR20181931 |
[16] | Zhang, Y.E. (2017) Non-Smad Signaling Pathways of the TGF-β Family. Cold Spring Harbor Perspectives in Biology, 9, a022129. https://doi.org/10.1101/cshperspect.a022129 |
[17] | Frangogiannis, N. (2020) Transforming Growth Factor-β in Tissue Fibrosis. Journal of Experimental Medicine, 217, e20190103. https://doi.org/10.1084/jem.20190103 |
[18] | Maruyama, K. and Imanaka-Yoshida, K. (2022) The Pathogenesis of Cardiac Fibrosis: A Review of Recent Progress. International Journal of Molecular Sciences, 23, Article 2617. https://doi.org/10.3390/ijms23052617 |
[19] | Hinderer, S. and Schenke-Layland, K. (2019) Cardiac Fibrosis—A Short Review of Causes and Therapeutic Strategies. Advanced Drug Delivery Reviews, 146, 77-82. https://doi.org/10.1016/j.addr.2019.05.011 |
[20] | Mitchell, M.D., Laird, R.E., Brown, R.D., et al. (2007) IL-1beta Stimulates Rat Cardiac Fibroblast Migration via MAP Kinase Pathways. American Journal of Physiology-Heart and Circulatory Physiology, 292, H1139-H1147. https://doi.org/10.1152/ajpheart.00881.2005 |
[21] | Fan, D., Li, L., Wang, C., et al. (2011) Adiponectin Induces Interleukin-6 Production and Its Underlying Mechanism in Adult Rat Cardiac Fibroblasts. Journal of Cellular Physiology, 226, 1793-1802. https://doi.org/10.1002/jcp.22512 |
[22] | Yi, X., Li, X., Zhou, Y., et al. (2014) Hepatocyte Growth Factor Regulates the TGF-β1-Induced Proliferation, Differentiation and Secretory Function of Cardiac Fibroblasts. International Journal of Molecular Medicine, 34, 381-390. https://doi.org/10.3892/ijmm.2014.1782 |
[23] | Jen, Y., Manova, K. and Benezra, R. (1996) Expression Patterns of Id1, Id2, and Id3 Are Highly Related but Distinct from that of Id4 during Mouse Embryogenesis. Developmental Dynamics, 207, 235-252. https://doi.org/10.1002/(SICI)1097-0177(199611)207:3<235::AID-AJA1>3.0.CO;2-I |
[24] | Izumi, N., Mizuguchi, S., Inagaki, Y., et al. (2006) BMP-7 Opposes TGF-Beta1-Mediated Collagen Induction in Mouse Pulmonary Myofibroblasts through Id2. American Journal of Physiology-Heart and Circulatory Physiology, 290, L120-L126. https://doi.org/10.1152/ajplung.00171.2005 |
[25] | Tajima, K., Terai, S., Takami, T., et al. (2007) Importance of Inhibitor of DNA Binding/Differentiation 2 in Hepatic Stellate Cell Differentiation and Proliferation. Hepatology Research, 37, 647-655. https://doi.org/10.1111/j.1872-034X.2007.00089.x |
[26] | Kinoshita, K., Iimuro, Y., Otogawa, K., et al. (2007) Adenovirus-Mediated Expression of BMP-7 Suppresses the Development of Liver Fibrosis in Rats. Gut, 56, 706-714. https://doi.org/10.1136/gut.2006.092460 |
[27] | Yang, J., Velikoff, M., Agarwal, M., et al. (2015) Overexpression of Inhibitor of DNA-Binding 2 Attenuates Pulmonary Fibrosis through Regulation of c-Abl and Twist. The American Journal of Pathology, 185, 1001-1011. https://doi.org/10.1016/j.ajpath.2014.12.008 |
[28] | Vigolo, E., Markó, L., Hinze, C., et al. (2019) Canonical BMP Signaling in Tubular Cells Mediates Recovery after Acute Kidney Injury. Kidney International, 95, 108-122. https://doi.org/10.1016/j.kint.2018.08.028 |
[29] | Xiao, Y., Jiang, X., Peng, C., et al. (2019) BMP-7/Smads-Induced Inhibitor of Differentiation 2 (Id2) Upregulation and Id2/Twist Interaction Was Involved in Attenuating Diabetic Renal Tubulointerstitial Fibrosis. The International Journal of Biochemistry & Cell Biology, 116, Article 105613. https://doi.org/10.1016/j.biocel.2019.105613 |
[30] | Lee, H.W., Adachi, T., Pak, B., et al. (2023) BMPR1A Promotes ID2-ZEB1 Interaction to Suppress Excessive Endothelial to Mesenchymal Transition. Cardiovascular Research, 119, 813-825. https://doi.org/10.1093/cvr/cvac159 |
[31] | Yin, L., Liu, M., Li, W., et al. (2019) Over-Expression of Inhibitor of Differentiation 2 Attenuates Post-Infarct Cardiac Fibrosis through Inhibition of TGF-β1/Smad3/HIF-1α/IL-11 Signaling Pathway. Frontiers in Pharmacology, 10, Article 1349. https://doi.org/10.3389/fphar.2019.01349 |
[32] | 刘玉莲, 刘政, 季博, 等. 浅析“心主血脉”理论与闭塞性动脉硬化症相关性[J]. 中国中西医结合外科杂志, 2021, 27(5): 778-781. |
[33] | 张露丹, 孙艳君, 刘凡琪, 等. 心力衰竭气虚血瘀证相关生物学标志物研究述评与展望[J]. 天津中医药, 2024, 41(2): 258-263. |
[34] | 周曼丽, 俞赟丰, 张宜帆, 等. 基于代谢组学的中药治疗冠心病血瘀证生物标志物分析[J]. 辽宁中医杂志, 2024, 51(2): 17-24. |
[35] | 刘颜, 刘孟楠, 杨廷富, 等. 中药防治心肌纤维化的研究进展[J]. 中药药理与临床, 2023, 39(2): 101-109. |
[36] | 商行, 郭家娟. 中药单体及复方干预心肌纤维化的作用机制研究[J/OL]. 中国中医基础医学杂志: 1-7. https://doi.org/10.19945/j.cnki.issn.1006-3250.20231115.001, 2024-03-12. |
[37] | 杨珊, 赵暖暖, 杨鑫, 等. 人参活性成分及药理作用研究进展[J]. 中医药导报, 2023, 29(1): 105-107, 116. |
[38] | Li, C., Gou, X. and Gao, H. (2021) Doxorubicin Nanomedicine Based on Ginsenoside Rg1 with Alleviated Cardiotoxicity and Enhanced Antitumor Activity. Nanomedicine, 16, 2587-2604. https://doi.org/10.2217/nnm-2021-0329 |
[39] | Guan, S., Xin, Y., Ding, Y., et al. (2023) Ginsenoside Rg1 Protects against Cardiac Remodeling in Heart Failure via SIRT1/PINK1/Parkin-Mediated Mitophagy. Chemistry & Biodiversity, 20, e202200730. https://doi.org/10.1002/cbdv.202200730 |
[40] | Tian, G., Li, J. and Zhou, L. (2023) Ginsenoside Rg1 Regulates Autophagy and Endoplasmic Reticulum Stress via the AMPK/mTOR and PERK/ATF4/CHOP Pathways to Alleviate Alcohol-Induced Myocardial Injury. International Journal of Molecular Medicine, 52, Article No. 56. https://doi.org/10.3892/ijmm.2023.5259 |
[41] | 吕丽娜, 姜丽红. 人参皂苷Rg1对心血管系统的药理作用研究进展[J]. 现代中药研究与实践, 2020, 34(6): 83-86. |
[42] | Zhen, J., Bai, J., Liu, J., et al. (2023) Ginsenoside RG1-Induced Mesenchymal Stem Cells Alleviate Diabetic Cardiomyopathy through Secreting Exosomal CircNOTCH1 to Promote Macrophage M2 Polarization. Phytotherapy Research, 38, 1745-1760. https://doi.org/10.1002/ptr.8018 |
[43] | Luo, M., Yan, D., Sun, Q., et al. (2020) Ginsenoside Rg1 Attenuates Cardiomyocyte Apoptosis and Inflammation via the TLR4/NF-KB/NLRP3 Pathway. Journal of Cellular Biochemistry, 121, 2994-3004. https://doi.org/10.1002/jcb.29556 |
[44] | Qin, Q., Lin, N., Huang, H., et al. (2019) Ginsenoside Rg1 Ameliorates Cardiac Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats. Diabetes, Metabolic Syndrome and Obesity, 12, 1091-1103. https://doi.org/10.2147/DMSO.S208989 |
[45] | Li, L., Pan, C.S., Yan, L., et al. (2018) Ginsenoside Rg1 Ameliorates Rat Myocardial Ischemia-Reperfusion Injury by Modulating Energy Metabolism Pathways. Frontiers in Physiology, 9, Article 78. https://doi.org/10.3389/fphys.2018.00078 |
[46] | Xu, Z.M., Li, C.B., Liu, Q.L., et al. (2018) Ginsenoside Rg1 Prevents Doxorubicin-Induced Cardiotoxicity through the Inhibition of Autophagy and Endoplasmic Reticulum Stress in Mice. International Journal of Molecular Sciences, 19, Article 3658. https://doi.org/10.3390/ijms19113658 |