|
幼年关节炎的单基因背景
|
Abstract:
幼年特发性关节炎(juvenile idiopathic arthritis, JIA)是儿童期最常见的慢性风湿性疾病,包含一组异质性疾病,机制尚不清楚。受影响患者表型可变提示容易被误诊,少数被发现是单基因突变引起免疫功能异常所致,称为免疫出生缺陷(inborn errors of immunity, IEI)。因此,在症状不典型或难治的情况下,有必要行基因检查。本综述旨在总结JIA的免疫发病机制以及模拟幼年关节炎表型的IEI,提高临床认识和增加对JIA关键分子途径的理解。
Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in childhood, including a group of heterogeneous diseases, and the mechanism is still unclear. The variable phenotype of affected patients indicates that they are easily misdiagnosed, and a few are found to be caused by abnormal immune function caused by monogenic mutation, which is called inborn errors of immunity (IEI). Therefore, in the case of atypical or refractory symptoms, it is necessary to carry out genetic testing. This review aims to summarize the immune pathogenesis of JIA and the IEI that mimics the phenotype of juvenile arthritis, improve clinical understanding and increase understanding of the key molecular pathways of JIA.
[1] | Martini, A., Lovell, D.J., Albani, S., et al. (2022) Juvenile Idiopathic Arthritis. Nature Reviews Disease Primers, 8, Article No. 5. https://doi.org/10.1038/s41572-021-00332-8 |
[2] | De Silvestri, A., Capittini, C., Poddighe, D., et al. (2017) HLA-DRB1 Alleles and Juvenile Idiopathic Arthritis: Diagnostic Clues Emerging from a Meta-Analysis. Autoimmunity Reviews, 16, 1230-1236. https://doi.org/10.1016/j.autrev.2017.10.007 |
[3] | Jang, D.I., Lee, A.H., Shin, H.Y., et al. (2021) The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. International Journal of Molecular Sciences, 22, Article 2719. https://doi.org/10.3390/ijms22052719 |
[4] | Maggi, L., Mazzoni, A., Cimaz, R., et al. (2019) Th17 and Th1 Lymphocytes in Oligoarticular Juvenile Idiopathic Arthritis. Frontiers in Immunology, 10, Article 450. https://doi.org/10.3389/fimmu.2019.00450 |
[5] | Paroli, M., Spadea, L., Caccavale, R., et al. (2022) The Role of Interleukin-17 in Juvenile Idiopathic Arthritis: From Pathogenesis to Treatment. Medicina, 58, Article 1552. https://doi.org/10.3390/medicina58111552 |
[6] | Henderson, L.A., Hoyt, K.J., Lee, P.Y., et al. (2020) Th17 Reprogramming of T Cells in Systemic Juvenile Idiopathic Arthritis. JCI Insight, 5, e132508. https://doi.org/10.1172/jci.insight.132508 |
[7] | Rao, D.A., Gurish, M.F., Marshall, J.L., et al. (2017) Pathologically Expanded Peripheral T Helper Cell Subset Drives B Cells in Rheumatoid Arthritis. Nature, 542, 110-114. https://doi.org/10.1038/nature20810 |
[8] | Julé, A.M., Lam, K.P., Taylor, M., et al. (2022) Disordered T Cell-B Cell Interactions in Autoantibody-Positive Inflammatory Arthritis. Frontiers in Immunology, 13, Article 1068399. https://doi.org/10.3389/fimmu.2022.1068399 |
[9] | Mahmud, S.A. and Binstadt, B.A. (2018) Autoantibodies in the Pathogenesis, Diagnosis, and Prognosis of Juvenile Idiopathic Arthritis. Frontiers in Immunology, 9, Article 3168. https://doi.org/10.3389/fimmu.2018.03168 |
[10] | Fischer, J., Dirks, J., Klaussner, J., et al. (2022) Effect of Clonally Expanded PD-1(High) CXCR5-CD4 Peripheral T Helper Cells on B Cell Differentiation in the Joints of Patients with Antinuclear Antibody-Positive Juvenile Idiopathic Arthritis. Arthritis & Rheumatology, 74, 150-162. https://doi.org/10.1002/art.41913 |
[11] | La Bella, S., Rinaldi, M., Di Ludovico, A., et al. (2023) Genetic Background and Molecular Mechanisms of Juvenile Idiopathic Arthritis. International Journal of Molecular Sciences, 24, Article 1846. https://doi.org/10.3390/ijms24031846 |
[12] | Mellins, E.D., Macaubas, C. and Grom, A.A. (2011) Pathogenesis of Systemic Juvenile Idiopathic Arthritis: Some Answers, More Questions. Nature Reviews Rheumatology, 7, 416-426. https://doi.org/10.1038/nrrheum.2011.68 |
[13] | Arve-Butler, S., Schmidt, T., Mossberg, A., et al. (2021) Synovial Fluid Neutrophils in Oligoarticular Juvenile Idiopathic Arthritis Have an Altered Phenotype and Impaired Effector Functions. Arthritis Research & Therapy, 23, Article No. 109. https://doi.org/10.1186/s13075-021-02483-1 |
[14] | Schmidt, T., Berthold, E., Arve-Butler, S., et al. (2020) Children with Oligoarticular Juvenile Idiopathic Arthritis Have Skewed Synovial Monocyte Polarization Pattern with Functional Impairment—A Distinct Inflammatory Pattern for Oligoarticular Juvenile Arthritis. Arthritis Research & Therapy, 22, Article No. 186. https://doi.org/10.1186/s13075-020-02279-9 |
[15] | ?widrowska-Jaros, J. and Smolewska, E. (2018) A Fresh Look at Angiogenesis in Juvenile Idiopathic Arthritis. Central European Journal of Immunology, 43, 325-330. https://doi.org/10.5114/ceji.2018.80052 |
[16] | Margheri, F., Maggi, L., Biagioni, A., et al. (2021) Th17 Lymphocyte-Dependent Degradation of Joint Cartilage by Synovial Fibroblasts in a Humanized Mouse Model of Arthritis and Reversal by Secukinumab. European Journal of Immunology, 51, 220-230. https://doi.org/10.1002/eji.202048773 |
[17] | Mazzoni, M., Dell’orso, G., Grossi, A., et al. (2021) Underlying CTLA4 Deficiency in a Patient with Juvenile Idiopathic Arthritis and Autoimmune Lymphoproliferative Syndrome Features Successfully Treated with Abatacept—A Case Report. Journal of Pediatric Hematology Oncology, 43, e1168-e1172. https://doi.org/10.1097/MPH.0000000000002120 |
[18] | Oz, R.S. and Tesher, M.S. (2019) Arthritis in Children with LRBA Deficiency—Case Report and Literature Review. Pediatric Rheumatology, 17, Article No. 82. https://doi.org/10.1186/s12969-019-0388-4 |
[19] | Ran, Q.Q., Li, Y.W., Chen, H., et al. (2022) Retrospective Study of 98 Patients with X-Linked Agammaglobulinemia Complicated with Arthritis. Clinical Rheumatology, 41, 1889-1897. https://doi.org/10.1007/s10067-022-06095-1 |
[20] | Wu, K.Y., Purswani, P., Ujhazi, B., et al. (2019) Arthritis in Two Patients with Partial Recombination Activating Gene Deficiency. Frontiers in Pediatrics, 7, Article 235. https://doi.org/10.3389/fped.2019.00235 |
[21] | Chen, N., Zhang, Z.Y., Liu, D.W., et al. (2015) The Clinical Features of Autoimmunity in 53 Patients with Wiskott-Aldrich Syndrome in China: A Single-Center Study. European Journal of Pediatrics, 174, 1311-1318. https://doi.org/10.1007/s00431-015-2527-3 |
[22] | Frémond, M.L. and Nathan, N. (2021) COPA Syndrome, 5 Years after: Where Are We? Joint Bone Spine, 88, Article ID: 105070. https://doi.org/10.1016/j.jbspin.2020.09.002 |
[23] | Basile, P., Gortani, G., Taddio, A., et al. (2022) A Toddler with an Unusually Severe Polyarticular Arthritis and a Lung Involvement: A Case Report. BMC Pediatrics, 22, Article No. 639. https://doi.org/10.1186/s12887-022-03716-1 |
[24] | Krutzke, S., Rietschel, C. and Horneff, G. (2020) Baricitinib in Therapy of COPA Syndrome in a 15-Year-Old Girl. European Journal of Rheumatology, 7, S78-S81. https://doi.org/10.5152/eurjrheum.2019.18177 |
[25] | Clarke, S.L.N., Robertson, L., Rice, G.I., et al. (2020) Type 1 Interferonopathy Presenting as Juvenile Idiopathic Arthritis with Interstitial Lung Disease: Report of a New Phenotype. Pediatric Rheumatology, 18, Article No. 37. https://doi.org/10.1186/s12969-020-00425-w |
[26] | Deng, Z., Chong, Z., Law, C.S., et al. (2020) A Defect in COPI-Mediated Transport of STING Causes Immune Dysregulation in COPA Syndrome. Journal of Experimental Medicine, 217, e20201045. https://doi.org/10.1084/jem.20201045 |
[27] | Ferjani, H.L., Kharrat, L., Ben Nessib, D., et al. (2023) Management of Blau Syndrome: Review and Proposal of a Treatment Algorithm. European Journal of Pediatrics, 183, 1-7. |
[28] | Matsuda, T., Kambe, N., Takimoto-Ito, R., et al. (2022) Potential Benefits of TNF Targeting Therapy in Blau Syndrome, a NOD2-Associated Systemic Autoinflammatory Granulomatosis. Frontiers in Immunology, 13, Article 895765. https://doi.org/10.3389/fimmu.2022.895765 |
[29] | Zhong, Z.Y., Dai, L.Y., Ding, J.D., et al. (2023) Molecular Diagnostic Yield for Blau Syndrome in Previously Diagnosed Juvenile Idiopathic Arthritis with Uveitis or Cutaneous Lesions. Rheumatology, 00, 1-9. https://doi.org/10.1093/rheumatology/kead596 |
[30] | Satoh, T.K. (2024) Genetic Mutations in Pyoderma Gangrenosum, Hidradenitis Suppurativa, and Associated Autoinflammatory Syndromes: Insights into Pathogenic Mechanisms and Shared Pathways. Journal of Dermatology, 51, 160-171. https://doi.org/10.1111/1346-8138.17028 |
[31] | Martinez-Rios, C., Jariwala, M.P., Highmore, K., et al. (2019) Imaging Findings of Sterile Pyogenic Arthritis, Pyoderma Gangrenosum and Acne (PAPA) Syndrome: Differential Diagnosis and Review of the Literature. Pediatric Radiology, 49, 23-36. https://doi.org/10.1007/s00247-018-4246-1 |
[32] | Sanz-Cabanillas, J.L., Gómez-García, F., Gómez-Arias, P.J., et al. (2024) Efficacy and Safety of Anakinra and Canakinumab in PSTPIP1-Associated Inflammatory Diseases: A Comprehensive Scoping Review. Frontiers in Immunology, 14, Article 1339337. https://doi.org/10.3389/fimmu.2023.1339337 |
[33] | Zhong, L.Q., Wang, W., Li, J., et al. (2020) The Association of MEFV Gene Mutations with the Disease Risk and Severity of Systemic Juvenile Idiopathic Arthritis. Pediatric Rheumatology, 18, Article No. 38. https://doi.org/10.1186/s12969-020-00427-8 |
[34] | Avar-Aydin, P.O., Ozcakar, Z.B., Aydin, F., et al. (2022) The Expanded Spectrum of Arthritis in Children with Familial Mediterranean Fever. Clinical Rheumatology, 41, 1535-1541. https://doi.org/10.1007/s10067-022-06082-6 |
[35] | Chen, Y., Ye, Z.H., Chen, L.P., et al. (2020) Association of Clinical Phenotypes in Haploinsufficiency A20 (HA20) with Disrupted Domains of A20. Frontiers in Immunology, 11, Article 574992. https://doi.org/10.3389/fimmu.2020.574992 |
[36] | Omarjee, O., Mathieu, A.L., Quiniou, G., et al. (2021) LACC1 Deficiency Links Juvenile Arthritis with Autophagy and Metabolism in Macrophages. Journal of Experimental Medicine, 218, e20201006. https://doi.org/10.1084/jem.20201006 |
[37] | Skon-Hegg, C., Zhang, J., Wu, X., et al. (2019) LACC1 Regulates TNF and IL-17 in Mouse Models of Arthritis and Inflammation. The Journal of Immunology, 202, 183-193. https://doi.org/10.4049/jimmunol.1800636 |
[38] | Wu, Y.L., Wang, S.S., Yin, W., et al. (2023) Clinical Characteristics and Genotype Analysis of a Chinese Patient with Juvenile Arthritis Due to Novel LACC1 Frameshift Mutation and Literature Review. Molecular Genetics & Genomic Medicine, 11, e2175. https://doi.org/10.1002/mgg3.2175 |
[39] | Sikora, K.A., Bennett, J.R., Vyncke, L., et al. (2018) Germline Gain-of-Function Myeloid Differentiation Primary Response Gene-88 (MYD88) Mutation in a Child with Severe Arthritis. Journal of Allergy and Clinical Immunology, 141, 1943-1947.E9. https://doi.org/10.1016/j.jaci.2018.01.027 |
[40] | Schlenner, S., Pasciuto, E., Lagou, V., et al. (2019) NFIL3 Mutations Alter Immune Homeostasis and Sensitise for Arthritis Pathology. Annals of the Rheumatic Diseases, 78, 342-349. https://doi.org/10.1136/annrheumdis-2018-213764 |
[41] | Schulert, G.S., Zhang, M.C., Husami, A., et al. (2018) Novel UNC13D Intronic Variant Disrupting an NF-κB Enhancer in a Patient with Recurrent Macrophage Activation Syndrome and Systemic Juvenile Idiopathic Arthritis. Arthritis & Rheumatology, 70, 963-970. https://doi.org/10.1002/art.40438 |