|
1,25(OH)2D3通过稳定线粒体DNA对GCDC诱导的HiBECs凋亡的作用研究
|
Abstract:
目的:探讨骨化三醇(1,25(OH)2D3)对甘氨鹅脱氧胆酸盐(GCDC)诱导的人肝内胆管上皮细胞(HiBECs)凋亡的影响,并初步阐明其潜在的作用机制。方法:采用1 nM GCDC处理HiBECs建立原发性胆汁性胆管炎细胞模型,并采用不同浓度(0.1 nM、1 nM、10 nM、100 nM) 1,25(OH)2D3处理12 h。流式细胞术检测细胞凋亡水平,ELISA检测细胞培养液中炎症因子IL-6和IL-8水平,qPCR检测PDC-E2、PGC-1α、NrF-1和NrF-2的mRNA相对表达水平,Western blot检测细胞内Bcl-2、PDC-E2表达水平。结果:1 mM GCDC可以降低HiBECs细胞增殖活性,诱导HiBECs凋亡,提高细胞培养液中IL-6和IL-8水平,上调PDC-E2蛋白表达,下调Bcl-2蛋白表达,抑制COX-1、PGC-1α、NrF-1和NrF-2 mRNA相对表达水平。可以提高GCDC诱导的HiBECs细胞增殖活性,抑制GCDC诱导HiBECs细胞凋亡,降低细胞培养液中IL-6和IL-8水平,下调PDC-E2蛋白表达水平,提高COX-1、PGC-1α、NrF-1和NrF-2 mRNA相对表达水平。结论:1,25(OH)2D3可抑制诱导HiBECs细胞凋亡,其作用机制可能与线粒体DNA稳定有关。
Objective: To investigate the effects of osteotriol (1,25(OH)2D3) on Glycochenodeoxycholate (GCDC)-induced apoptosis of human intrahepatic biliary epithelial cells (HiBECs) and to preliminarily elucidate its potential mechanism of action. Methods: Primary biliary cholangitis cell model was established by treating HiBECs with 1 nM GCDC and treated with different concentrations (0.1 nM, 1 nM, 10 nM, 100 nM) of 1,25(OH)2D3 for 12 h. The apoptosis level was detected by flow cytometry, the levels of the inflammatory factors IL-6 and IL-8 were detected by ELISA in the cell culture fluid, and qPCR was performed to detect the relative mRNA expression levels of PDC-E2, PGC-1α, NrF-1 and NrF-2 were detected by qPCR, and the intracellular expression levels of Bcl-2 and PDC-E2 were detected by Western blot. Results: 1 mM GCDC could reduce the proliferative activity of HiBECs cells, induce apoptosis of HiBECs, increase the levels of IL-6 and IL-8 in the cell culture medium, up-regulate the expression of PDC-E2 protein, down-regulate the expression of Bcl-2 protein, and inhibit the relative expression levels of COX-1, PGC-1α, NrF-1, and NrF-2 mRNA. It can increase the proliferative activity of GCDC-induced HiBECs cells, inhibit GCDC-induced apoptosis of HiBECs cells, reduce the levels of IL-6 and IL-8 in the cell culture medium, down-regulate the level of PDC-E2 protein expression, and increase the level of COX-1, PGC-1α, NrF-1 and NrF-2 mRNA relative expression. Conclusion: 1,25(OH)2D3 can inhibit the induction of apoptosis in HiBECs, and its mechanism of action may be related to mitochondrial DNA stabilisation.
[1] | Carey, E.J., Ali, A.H. and Lindor, K.D. (2015) Primary Biliary Cirrhosis. The Lancet, 386, 1565-1575. https://doi.org/10.1016/S0140-6736(15)00154-3 |
[2] | Laschtowitz, A., De Veer, R.C., Van Der, Meer, A.J., et al. (2020) Diagnosis and Treatment of Primary Biliary Cholangitis. United European Gastroenterology Journal, 8, 667-674. https://doi.org/10.1177/2050640620919585 |
[3] | Li, H., Guan, Y., Han, C., Zhang, Y., Liu, Q., Wei, W. and Ma, Y. (2021) The Pathogenesis, Models and Therapeutic Advances of Primary Biliary Cholangitis. Biomedicine & Pharmacotherapy, 140, Article 111754. https://pubmed.ncbi.nlm.nih.gov/34044277/ https://doi.org/10.1016/j.biopha.2021.111754 |
[4] | Spiechowicz, M., Zylicz, A., Bieganowski, P., et al. (2007) Hsp70 Is a New Target of Sgt1—An Interaction Modulated by S100A6. Biochemical and Biophysical Research Communications, 357, 1148-1153. https://doi.org/10.1016/j.bbrc.2007.04.073 |
[5] | Rust, C., Wild, N., Bernt, C., et al. (2009) Bile Acid-Induced Apoptosis in Hepatocytes Is Caspase-6-Dependent. The Journal of Biological Chemistry, 284, 2908-2916. https://doi.org/10.1074/jbc.M804585200 |
[6] | Arduini, A., Serviddio, G., Escobar, J., et al. (2011) Mitochondrial Biogenesis Fails in Secondary Biliary Cirrhosis in Rats Leading to Mitochondrial DNA Depletion and Deletions. American Journal of Physiology-Gastrointestinal and Liver Physiology, 301, G119-G127. https://doi.org/10.1152/ajpgi.00253.2010 |
[7] | Pejznochova, M., Tesarova, M., Hansikova, H., et al. (2010) Mitochondrial DNA Content and Expression of Genes Involved in mtDNA Transcription, Regulation and Maintenance during Human Fetal Development. Mitochondrion, 10, 321-329. https://doi.org/10.1016/j.mito.2010.01.006 |
[8] | Heidari, R. and Niknahad, H. (2019) The Role and Study of Mitochondrial Impairment and Oxidative Stress in Cholestasis. In: Vinken, M., Ed., Experimental Cholestasis Research. Methods in Molecular Biology, Vol. 1981, Humana, New York, 117-132. https://doi.org/10.1007/978-1-4939-9420-5_8 |
[9] | Picca, A., Calvani, R., Coelho-Junior, H.J., et al. (2021) Cell Death and Inflammation: The Role of Mitochondria in Health and Disease. Cells, 10, Article 537. https://doi.org/10.3390/cells10030537 |
[10] | Alexeyev, M., Shokolenko, I., Wilson, G. and LeDoux, S. (2013) The Maintenance of Mitochondrial DNA Integrity—Critical Analysis and Update. Cold Spring Harbor Perspectives in Biology, 5, Article a012641. https://pubmed.ncbi.nlm.nih.gov/23637283/ https://doi.org/10.1101/cshperspect.a012641 |
[11] | Saki, M. and Prakash, A. (2017) DNA Damage Related Crosstalk between the Nucleus and Mitochondria. Free Radical Biology and Medicine, 107, 216-227. https://doi.org/10.1016/j.freeradbiomed.2016.11.050 |
[12] | Bouillon, R., Marcocci, C., Carmeliet, G., et al. (2019) Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocrine Reviews, 40, 1109-1151. https://doi.org/10.1210/er.2018-00126 |
[13] | Fleet, J.C. and Schoch, R.D. (2010) Molecular Mechanisms for Regulation of Intestinal Calcium Absorption by Vitamin D and Other Factors. Critical Reviews in Clinical Laboratory Sciences, 47, 181-195. https://doi.org/10.3109/10408363.2010.536429 |
[14] | Walker, V.P. and Modlin, R.L. (2009) The Vitamin D Connection to Pediatric Infections and Immune Function. Pediatric Research, 65, 106-113. https://doi.org/10.1203/PDR.0b013e31819dba91 |
[15] | Holick, M.F. (2007) Vitamin D Deficiency. The New England Journal of Medicine, 357, 266-281. https://doi.org/10.1056/NEJMra070553 |
[16] | Plum, L.A. and DeLuca, H.F. (2010) Vitamin D, Disease and Therapeutic Opportunities. Nature Reviews Drug Discovery, 9, 941-955. https://doi.org/10.1038/nrd3318 |
[17] | Kempinska-Podhorodecka, A., Milkiewicz, M., Wasik, U., et al. (2017) Decreased Expression of Vitamin D Receptor Affects an Immune Response in Primary Biliary Cholangitis via the VDR-miRNA155-SOCS1 Pathway. International Journal of Molecular Sciences, 18, Article 289. https://doi.org/10.3390/ijms18020289 |
[18] | Banerjee, A., Athalye, S., Khargekar, N., et al. (2023) Chronic Hepatitis B and Related Liver Diseases Are Associated with Reduced 25-Hydroxy-Vitamin D Levels: A Systematic Review and Meta-Analysis. Biomedicines, 11, Article 135. https://doi.org/10.3390/biomedicines11010135 |
[19] | Chan, H.L.-Y., Elkhashab, M., Trinh, H., et al. (2015) Association of Baseline Vitamin D Levels with Clinical Parameters and Treatment Outcomes in Chronic Hepatitis B. Journal of Hepatology, 63, 1086-1092. https://doi.org/10.1016/j.jhep.2015.06.025 |
[20] | García-álvarez, M., Pineda-Tenor, D., Jiménez-Sousa, M.A., et al. (2014) Relationship of Vitamin D Status with Advanced Liver Fibrosis and Response to Hepatitis C Virus Therapy: A Meta-Analysis. Hepatology, 60, 1541-1550. https://doi.org/10.1002/hep.27281 |
[21] | Udomsinprasert, W., Jittikoon, J., Sukkho, S., et al. (2020) Decreased Circulating Vitamin D Reflects Adverse Outcomes of Hepatitis C Virus Infection: A Systematic Review and Meta-Analysis. The Journal of Infection, 81, 585-599. https://doi.org/10.1016/j.jinf.2020.06.025 |
[22] | Tao, S., Zhang, H., Zhao, Q., et al. (2020) Correlation of Vitamin D with Inflammatory Factors, Oxidative Stress and T Cell Subsets in Patients with Autoimmune Hepatitis. Experimental and Therapeutic Medicine, 19, 3419-3424. https://doi.org/10.3892/etm.2020.8601 |
[23] | Reda, D., Elshopakey, G.E., Albukhari, T.A., et al. (2023) Vitamin D3 Alleviates Nonalcoholic Fatty Liver Disease in Rats by Inhibiting Hepatic Oxidative Stress and Inflammation via the SREBP-1-C/ PPARα-NF-κB/IR-S2 Signaling Pathway. Frontiers in Pharmacology, 14, Article 1164512. https://doi.org/10.3389/fphar.2023.1164512 |
[24] | Stepan, M.D., Vintilescu ?.B., Strea??, I., et al. (2023) The Role of Vitamin D in Obese Children with Non-Alcoholic Fatty Liver Disease and Associated Metabolic Syndrome. Nutrients, 15, Article 2113. https://doi.org/10.3390/nu15092113 |
[25] | Xu, H., Wu, Z., Feng, F., et al. (2022) Low Vitamin D Concentrations and BMI Are Causal Factors for Primary Biliary Cholangitis: A Mendelian Randomization Study. Frontiers in Immunology, 13, Article 1055953. https://doi.org/10.3389/fimmu.2022.1055953 |
[26] | Wang, Z., Peng, C., Wang, P., et al. (2020) Serum Vitamin D Level Is Related to Disease Progression in Primary Biliary Cholangitis. Scandinavian Journal of Gastroenterology, 55, 1333-1340. https://doi.org/10.1080/00365521.2020.1829030 |
[27] | Ebadi, M., Ip, S., Lytvyak, E., et al. (2022) Vitamin D Is Associated with Clinical Outcomes in Patients with Primary Biliary Cholangitis. Nutrients, 14, Article 878. https://doi.org/10.3390/nu14040878 |
[28] | Jiang, S., Zhang, H., Li, X., et al. (2021) Vitamin D/VDR Attenuate Cisplatin-Induced AKI by Down-Regulating NLRP3/Caspase-1/GSDMD Pyroptosis Pathway. The Journal of Steroid Biochemistry and Molecular Biology, 206, Article 105789. https://doi.org/10.1016/j.jsbmb.2020.105789 |
[29] | Zhao, S., Zhong, Y., Xu, X. and Wan, D. (2022) 1α, 25-Dihydroxyvitamin D3 Protects Gastric Mucosa Epithelial Cells against Helicobacter pylori-Infected Apoptosis through a Vitamin D Receptor-Dependent c-Raf/MEK/ERK Pathway. Pharmaceutical Biology, 60, 801-809. https://doi.org/10.1080/13880209.2022.2058559 |
[30] | Fathi, F.E.Z.M., Sadek, K.M., Khafaga, A.F., et al. (2022) Correction to: Vitamin D Regulates Insulin and Ameliorates Apoptosis and Oxidative Stress in Pancreatic Tissues of Rats with Streptozotocin-Induced Diabetes. Environmental Science and Pollution Research International, 29, 90230. https://doi.org/10.1007/s11356-022-22427-9 |
[31] | Grünhage, F., Hochrath, K., Krawczyk, M., et al. (2012) Common Genetic Variation in Vitamin D Metabolism Is Associated with Liver Stiffness. Hepatology, 56, 1883-1891. https://doi.org/10.1002/hep.25830 |
[32] | Petta, S., Cammà, C., Scazzone, C., et al. (2010) Low Vitamin D Serum Level Is Related to Severe Fibrosis and Low Responsiveness to Interferon-Based Therapy in Genotype 1 Chronic Hepatitis C. Hepatology, 51, 1158-1167. https://doi.org/10.1002/hep.23489 |
[33] | Tourkochristou, E., Tsounis, E.P., Tzoupis, H., et al. (2023) The Influence of Single Nucleotide Polymorphisms on Vitamin D Receptor Protein Levels and Function in Chronic Liver Disease. International Journal of Molecular Sciences, 24, Article 11404. https://doi.org/10.3390/ijms241411404 |
[34] | Ebadi, M., Rider, E., Tsai, C., et al. (2023) Prognostic Significance of Severe Vitamin D Deficiency in Patients with Primary Sclerosing Cholangitis. Nutrients, 15, Article 576. https://doi.org/10.3390/nu15030576 |
[35] | Hochrath, K., Stokes, C.S., Geisel, J., et al. (2014) Vitamin D Modulates Biliary Fibrosis in ABCB4-Deficient Mice. Hepatology International, 8, 443-452. https://doi.org/10.1007/s12072-014-9548-2 |
[36] | Mihaylov, S.R., Castelli, L.M., Lin, Y.-H., et al. (2023) The Master Energy Homeostasis Regulator PGC-1α Exhibits an MRNA Nuclear Export Function. Nature Communications, 14, Article No. 5496. https://doi.org/10.1038/s41467-023-41304-8 |
[37] | Rubalcava-Gracia, D., García-Villegas, R. and Larsson, N.-G. (2023) No Role for Nuclear Transcription Regulators in Mammalian Mitochondria? Molecular Cell, 83, 832-842. https://doi.org/10.1016/j.molcel.2022.09.010 |
[38] | Ongwijitwat, S., Liang, H.L., Graboyes, E.M., et al. (2006) Nuclear Respiratory Factor 2 Senses Changing Cellular Energy Demands and Its Silencing Down-Regulates Cytochrome Oxidase and Other Target Gene mRNAs. Gene, 374, 39-49. https://doi.org/10.1016/j.gene.2006.01.009 |
[39] | Scarpulla, R.C. (2008) Transcriptional Paradigms in Mammalian Mitochondrial Biogenesis and Function. Physiological Reviews, 88, 611-638. https://doi.org/10.1152/physrev.00025.2007 |