全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

甘油三酯葡萄糖指数与肾脏疾病相关性的研究进展
Research Progress of Correlation between Triglyceride Glucose Index and Kidney Disease

DOI: 10.12677/acm.2024.1441274, PP. 2137-2143

Keywords: 甘油三酯葡萄糖指数,TyG指数,胰岛素抵抗,肾脏疾病
Triglyceride Glucose Index
, TyG Index, Insulin Resistance, Kidney Disease

Full-Text   Cite this paper   Add to My Lib

Abstract:

甘油三酯葡萄糖指数是评估人体胰岛素抵抗水平的新型科学指标,相较于传统胰岛素测量方法,它具有操作简便、报告迅速、经济负担小等优势。已有多项研究证实甘油三酯葡萄糖指数与包括急性肾损伤、慢性肾脏病、肾结石在内的多种肾脏疾病的发生、发展关系密切。此篇综述就该指标与各类肾脏疾病相关性的研究进展作详细梳理与归纳、总结,旨在探索该指数在肾脏疾病风险分层评估及早期预防中的潜在临床应用价值。
Triglyceride glucose index is a new scientific index to evaluate the insulin resistance of human body. Compared with the traditional insulin measurement method, it has the advantages of simple operation, rapid reporting and low economic burden. A number of domestic and foreign studies have proved that triglyceride glucose index is closely related to the occurrence and development of various kidney diseases. This review reviews the research progress of the correlation between this index and various kidney diseases in detail, and aims to explore the potential clinical application value of this index in stratified risk assessment and early prevention of kidney diseases.

References

[1]  World Health Organization (2019) World Health Statistics 2019: Monitoring Health for the SDGs, Sustainable Development Goals. Geneva.
[2]  陈香美. 中国肾脏病学发展的现状与未来[J]. 中华医学信息导报, 2021, 36(5): 19.
[3]  Wang, L., Xu, X., Zhang, M., et al. (2023) Prevalence of Chronic Kidney Disease in China: Results from the Sixth China Chronic Disease and Risk Factor Surveillance. JAMA Internal Medicine, 183, 298-310.
https://doi.org/10.1001/jamainternmed.2022.6817
[4]  Lee, S.H., Park, S.Y. and Choi, C.S. (2022) Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes & Metabolism Journal, 46, 15-37.
https://doi.org/10.4093/dmj.2021.0280
[5]  James, D.E., St?ckli, J. and Birnbaum, M.J. (2021) The Aetiology and Molecular Landscape of Insulin Resistance. Nature Reviews. Molecular Cell Biology, 22, 751-771.
https://doi.org/10.1038/s41580-021-00390-6
[6]  Behnoush, A.H., Mousavi, A., Ghondaghsaz, E., Shojaei, S., Cannavo, A. and Khalaji, A. (2024) The Importance of Assessing the Triglyceride-Glucose Index (TyG) in Patients with Depression: A Systematic Review. Neuroscience and Biobehavioral Reviews, 159, Article ID: 105582.
https://doi.org/10.1016/j.neubiorev.2024.105582
[7]  DeFronzo, R.A., Tobin, J.D. and Andres, R. (1979) Glucose Clamp Technique: A Method for Quantifying Insulin Secretion and Resistance. The American Journal of Physiology, 237, E214-E223.
https://doi.org/10.1152/ajpendo.1979.237.3.E214
[8]  Park, S.Y., Gautier, J.F. and Chon, S. (2021) Assessment of Insulin Secretion and Insulin Resistance in Human. Diabetes & Metabolism Journal, 45, 641-654.
https://doi.org/10.4093/dmj.2021.0220
[9]  Wallace, T.M., Levy, J.C. and Matthews, D.R. (2004) Use and Abuse of HOMA Modeling. Diabetes Care, 27, 1487-1495.
https://doi.org/10.2337/diacare.27.6.1487
[10]  Matthews, D.R., Hosker, J.P., Rudenski, A.S., Naylor, B.A., Treacher, D.F. and Turner, R.C. (1985) Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia, 28, 412-419.
https://doi.org/10.1007/BF00280883
[11]  Simental-MendíA, L.E., RodríGuez-MoráN, M. and Guerrero-Romero, F. (2008) The Product of Fasting Glucose and Triglycerides as Surrogate for Identifying Insulin Resistance in Apparently Healthy Subjects. Metabolic Syndrome and Related Disorders, 6, 299-304.
https://doi.org/10.1089/met.2008.0034
[12]  Guerrero-Romero, F., Simental-Mendía, L.E., González-Ortiz, M., Martínez-Abundis, E., Ramos-Zavala, M.G., Hernández-González, S.O., Jacques-Camarena, O. and Rodríguez-Morán, M. (2010) The Product of Triglycerides and Glucose, a Simple Measure of Insulin Sensitivity. Comparison with the Euglycemic-Hyperinsulinemic Clamp. The Journal of Clinical Endocrinology and Metabolism, 95, 3347-3351.
https://doi.org/10.1210/jc.2010-0288
[13]  Vincent, M.A., Montagnani, M. and Quon, M.J. (2003) Molecular and Physiologic Actions of Insulin Related to Production of Nitric Oxide in Vascular Endothelium. Current Diabetes Reports, 3, 279-288.
https://doi.org/10.1007/s11892-003-0018-9
[14]  Artunc, F., Schleicher, E., Weigert, C., Fritsche, A., Stefan, N. and H?ring, H.U. (2016) The Impact of Insulin Resistance on the Kidney and Vasculature. Nature Reviews. Nephrology, 12, 721-737.
https://doi.org/10.1038/nrneph.2016.145
[15]  Coward, R.J., Welsh, G.I., Yang, J., Tasman, C., Lennon, R., Koziell, A., Satchell, S., Holman, G.D., Kerjaschki, D., Tavaré, J.M., Mathieson, P.W. and Saleem, M.A. (2005) The Human Glomerular Podocyte Is a Novel Target for Insulin Action. Diabetes, 54, 3095-3102.
https://doi.org/10.2337/diabetes.54.11.3095
[16]  Pina, A.F., Borges, D.O., Meneses, M.J., Branco, P., Birne, R., Vilasi, A. and Macedo, M.P. (2020) Insulin: Trigger and Target of Renal Functions. Frontiers in Cell and Developmental Biology, 8, Article No. 519.
https://doi.org/10.3389/fcell.2020.00519
[17]  Singh, S., Sharma, R., Kumari, M. and Tiwari, S. (2019) Insulin Receptors in the Kidneys in Health and Disease. World Journal of Nephrology, 8, 11-22.
https://doi.org/10.5527/wjn.v8.i1.11
[18]  Cersosimo, E., Garlick, P. and Ferretti, J. (2000) Regulation of Splanchnic and Renal Substrate Supply by Insulin in Humans. Metabolism: Clinical and Experimental, 49, 676-683.
https://doi.org/10.1016/S0026-0495(00)80048-7
[19]  Lameire, N.H., Bagga, A., Cruz, D., De Maeseneer, J., Endre, Z., Kellum, J.A., Liu, K.D., Mehta, R.L., Pannu, N., Van Biesen, W. and Vanholder, R. (2013) Acute Kidney Injury: An Increasing Global Concern. The Lancet (London, England), 382, 170-179.
https://doi.org/10.1016/S0140-6736(13)60647-9
[20]  Ostermann, M., Bellomo, R., Burdmann, E.A., Doi, K., Endre, Z.H., Goldstein, S.L., Kane-Gill, S.L., Liu, K.D., Prowle, J.R., Shaw, A.D., Srisawat, N., Cheung, M., Jadoul, M., Winkelmayer, W.C., Kellum, J.A. and Conference Participants (2020) Controversies in Acute Kidney Injury: Conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference. Kidney International, 98, 294-309.
https://doi.org/10.1016/j.kint.2020.04.020
[21]  Qin, Y., Tang, H., Yan, G., Wang, D., Qiao, Y., Luo, E., Hou, J. and Tang, C. (2021) A High Triglyceride-Glucose Index Is Associated with Contrast-Induced Acute Kidney Injury in Chinese Patients with Type 2 Diabetes Mellitus. Frontiers in Endocrinology, 11, Article ID: 522883.
https://doi.org/10.3389/fendo.2020.522883
[22]  Zhu, Y., He, H., Qiu, H., Zhang, X., Wang, L. and Li, W. (2023) Prognostic Nutritional Index Combined with Triglyceride-Glucose Index to Contrast a Nomogram for Predicting Contrast-Induced Kidney Injury in Type 2 Diabetes Mellitus Patients with Acute Coronary Syndrome after Percutaneous Coronary Intervention. Clinical Interventions in Aging, 18, 1663-1673.
https://doi.org/10.2147/CIA.S429957
[23]  Aktas, H., Inci, S., Gul, M., Gencer, S. and Yildirim, O. (2023) Increased Triglyceride-Glucose Index Predicts Contrast-Induced Nephropathy in Non-Diabetic NSTEMI Patients: A Prospective Study. Journal of Investigative Medicine: The Official Publication of the American Federation for Clinical Research, 71, 838-844.
https://doi.org/10.1177/10815589231182317
[24]  Yang, Z., Gong, H., Kan, F. and Ji, N. (2023) Association between the Triglyceride Glucose (TyG) Index and the Risk of Acute Kidney Injury in Critically Ill Patients with Heart Failure: Analysis of the MIMIC-IV Database. Cardiovascular Diabetology, 22, Article No. 232.
https://doi.org/10.1186/s12933-023-01971-9
[25]  Shi, W., Liu, S., Jing, L., Tian, Y. and Xing, L. (2019) Estimate of Reduced Glomerular Filtration Rate by Triglyceride-Glucose Index: Insights from a General Chinese Population. Postgraduate Medicine, 131, 287-294.
https://doi.org/10.1080/00325481.2019.1595983
[26]  Li, L., Xu, Z., Jiang, L., Zhuang, L., Huang, J., Liu, D. and Wu, Q. (2023) Triglyceride-Glucose Index and Its Correlates: Associations with Serum Creatinine and Estimated Glomerular Filtration Rate in a Cross-Sectional Study from CHARLS 2011-2015. Metabolic Syndrome and Related Disorders, 22, 179-189.
https://doi.org/10.1089/met.2023.0188
[27]  Okamura, T., Hashimoto, Y., Hamaguchi, M., Obora, A., Kojima, T. and Fukui, M. (2019) Triglyceride-Glucose Index Is a Predictor of Incident Chronic Kidney Disease: A Population-Based Longitudinal Study. Clinical and Experimental Nephrology, 23, 948-955.
https://doi.org/10.1007/s10157-019-01729-2
[28]  Cui, C., Liu, L., Zhang, T., Fang, L., Mo, Z., Qi, Y., Zheng, J., Wang, Z., Xu, H., Yan, H., Yue, S., Wang, X. and Wu, Z. (2023) Triglyceride-Glucose Index, Renal Function and Cardiovascular Disease: A National Cohort Study. Cardiovascular Diabetology, 22, Article No. 325.
https://doi.org/10.1186/s12933-023-02055-4
[29]  Yan, Z., Yu, D., Cai, Y., Shang, J., Qin, R., Xiao, J., Zhao, B., Zhao, Z. and Simmons, D. (2019) Triglyceride Glucose Index Predicting Cardiovascular Mortality in Chinese Initiating Peritoneal Dialysis: A Cohort Study. Kidney and Blood Pressure Research, 44, 669-678.
https://doi.org/10.1159/000500979
[30]  Fritz, J., Brozek, W., Concin, H., Nagel, G., Kerschbaum, J., Lhotta, K., Ulmer, H. and Zitt, E. (2021) The Triglyceride-Glucose Index and Obesity-Related Risk of End-Stage Kidney Disease in Austrian Adults. JAMA Network Open, 4, E212612.
https://doi.org/10.1001/jamanetworkopen.2021.2612
[31]  Ahlqvist, E., Storm, P., K?r?j?m?ki, A., Martinell, M., Dorkhan, M., Carlsson, A., Vikman, P., Prasad, R.B., Aly, D.M., Almgren, P., Wessman, Y., Shaat, N., SpéGel, P., Mulder, H., Lindholm, E., Melander, O., Hansson, O., Malmqvist, U., Lernmark, ?., Lahti, K. and Groop, L. (2018) Novel Subgroups of Adult-Onset Diabetes and Their Association with Outcomes: A Data-Driven Cluster Analysis of Six Variables. The Lancet. Diabetes & Endocrinology, 6, 361-369.
https://doi.org/10.1016/S2213-8587(18)30051-2
[32]  Shang, J., Yu, D., Cai, Y., Wang, Z., Zhao, B., Zhao, Z. and Simmons, D. (2019) The Triglyceride Glucose Index Can Predict Newly Diagnosed Biopsy-Proven Diabetic Nephropathy in Type 2 Diabetes: A Nested Case Control Study. Medicine, 98, E17995.
https://doi.org/10.1097/MD.0000000000017995
[33]  Lv, L., Zhou, Y., Chen, X., Gong, L., Wu, J., Luo, W., Shen, Y., Han, S., Hu, J., Wang, Y., Li, Q., Wang, Z., Chongqing Diabetes Registry Group (2021) Relationship between the TyG Index and Diabetic Kidney Disease in Patients with Type-2 Diabetes Mellitus. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 3299-3306.
https://doi.org/10.2147/DMSO.S318255
[34]  Fu, X., Xu, Z., Tan, Q., Wei, W. and Wang, Z. (2023) Association between a High Triglyceride-Glucose Index and Chronic Kidney Disease in Adult Patients with Latent Autoimmune Diabetes. BMC Endocrine Disorders, 23, Article No. 209.
https://doi.org/10.1186/s12902-023-01465-5
[35]  Qin, Z., Zhao, J., Geng, J., Chang, K., Liao, R. and Su, B. (2021) Higher Triglyceride-Glucose Index Is Associated with Increased Likelihood of Kidney Stones. Frontiers in Endocrinology, 12, Article ID: 774567.
https://doi.org/10.3389/fendo.2021.774567
[36]  Jiang, H., Li, L., Liu, J., Xu, B., Chen, S., Zhu, W. and Chen, M. (2021) Triglyceride-Glucose Index as a Novel Biomarker in the Occurrence of Kidney Stones: A Cross-Sectional Population-Based Study. International Journal of General Medicine, 14, 6233-6244.
https://doi.org/10.2147/IJGM.S334821

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133