全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

MHC在肿瘤中的研究进展
Research Progress of MHC in Tumors

DOI: 10.12677/acm.2024.1441273, PP. 2131-2136

Keywords: 弥漫大B细胞淋巴瘤,主要组织相容性复合体,免疫逃逸,CD8 T细胞
Diffuse Large B-Cell Lymphoma
, Main Tissue Compatibility Complex, Immune Escape, CD8 T Cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

弥漫大B细胞淋巴瘤(diffuse large B cell lymphoma, DLBCL)是非霍奇金淋巴瘤(non-Hodgkin lymphoma, NHL)中最常见的类型,个体间有很强的异质性,1/3患者在治疗中出现耐药,转变为复发/难治型,预后较差,给临床治疗带来了极大的挑战。主要组织相容性(major histocompatibility, MHC)复合体在肿瘤免疫逃逸过程中扮演着重要的角色,肿瘤细胞可通过调节MHC的表达发生免疫逃逸,促进其发生发展。深入探讨MHC在肿瘤发生发展中的作用,对于发现新的治疗靶点以及开发更有效的免疫治疗策略,改善肿瘤患者的生存率具有重要意义。
Diffuse large B cell lymphoma (DLBCL) is the most common type of non Hodgkin lymphoma (NHL), with strong heterogeneity between individuals. One third of patients develop drug resistance during treatment, leading to refractory relapse and poor prognosis, posing great challenges to clinical treatment. The major histocompatibility complex (MHC) plays an important role in tumor immune escape, and tumor cells can induce immune escape by regulating the expression of MHC, promoting its occurrence and development. Exploring the role of MHC in tumor occurrence and development is of great significance for discovering new therapeutic targets, developing more effective immunotherapy strategies, and improving the survival rate of cancer patients.

References

[1]  Alaggio, R., Amador, C., Anagnostopoulos, I., et al. (2022) The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia, 36, 1720-1748.
https://doi.org/10.1038/s41375-022-01620-2
[2]  闫淑芳, 李思静, 刘波, 等. 头颈部结外弥漫大B细胞淋巴瘤的临床病理特征及预后分析[J]. 新疆医学, 2021, 51(7): 743-748.
[3]  Zhang, T., Liu, H., Jiao, L., et al. (2022) Genetic Characteristics Involving the PD-1/PD-L1/L2 and CD73/A2aR Axes and the Immunosuppressive Microenvironment in DLBCL. The Journal for ImmunoTherapy of Cancer, 10, e004114.
https://doi.org/10.1136/jitc-2021-004114
[4]  Algarra, I., Garrido, F. and Garcia-Lora, A.M. (2021) MHC Heterogeneity and Response of Metastases to Immunotherapy. Cancer and Metastasis Reviews, 40, 501-517.
https://doi.org/10.1007/s10555-021-09964-4
[5]  Bourne, C.M., Mun, S.S., Dao, T., et al. (2022) Unmasking the Suppressed Immunopeptidome of EZH2-Mutated Diffuse Large B-Cell Lymphomas through Combination Drug Treatment. Blood Advances, 6, 4107-4121.
https://doi.org/10.1182/bloodadvances.2021006069
[6]  Sabbatino, F., Villani, V., Yearley, J.H., et al. (2016) PD-L1 and HLA Class I Antigen Expression and Clinical Course of the Disease in Intrahepatic Cholangiocarcinoma. Clinical Cancer Research, 22, 470-478.
https://doi.org/10.1158/1078-0432.CCR-15-0715
[7]  Imai, D., Yoshizumi, T., Okano, S., et al. (2017) The Prognostic Impact of Programmed Cell Death Ligand 1 and Human Leukocyte Antigen Class I in Pancreatic Cancer. Cancer Medicine, 6, 1614-1626.
https://doi.org/10.1002/cam4.1087
[8]  Raskov, H., Orhan, A., Christensen, J.P., et al. (2021) Cytotoxic CD8( ) T Cells in Cancer and Cancer Immunotherapy. British Journal of Cancer, 124, 359-367.
https://doi.org/10.1038/s41416-020-01048-4
[9]  Blees, A., Januliene, D., Hofmann, T., et al. (2017) Structure of the Human MHC-I Peptide-Loading Complex. Nature, 551, 525-528.
https://doi.org/10.1038/nature24627
[10]  Carretero, F.J., Campo, A.B.D., Flores-Martin, J.F., et al. (2016) Frequent HLA Class I Alterations in Human Prostate Cancer: Molecular Mechanisms and Clinical Relevance. Cancer Immunology Immunotherapy, 65, 47-59.
https://doi.org/10.1007/s00262-015-1774-5
[11]  Pulido, M., Chamorro, V., Romero, I., et al. (2020) Restoration of MHC-I on Tumor Cells by Fhit Transfection Promotes Immune Rejection and Acts as an Individualized Immunotherapeutic Vaccine. Cancers (Basel), 12, Article No. 1563.
https://doi.org/10.3390/cancers12061563
[12]  Lim, S.Y., Shklovskaya, E., Lee, J.H., et al. (2023) The Molecular and Functional Landscape of Resistance to Immune Checkpoint Blockade in Melanoma. Nature Communications, 14, Article No. 1516.
https://doi.org/10.1038/s41467-023-36979-y
[13]  Ennishi, D., Takata, K., Beguelin, W., et al. (2019) Molecular and Genetic Characterization of MHC Deficiency Identifies EZH2 as Therapeutic Target for Enhancing Immune Recognition. Cancer Discovery, 9, 546-563.
https://doi.org/10.1158/2159-8290.CD-18-1090
[14]  Dhatchinamoorthy, K., Colbert, J.D. and Rock, K.L. (2021) Cancer Immune Evasion through Loss of MHC Class I Antigen Presentation. Frontiers in Immunology, 12, Article ID: 636568.
https://doi.org/10.3389/fimmu.2021.636568
[15]  Shklovskaya, E., Lee, J.H., Lim, S.Y., et al. (2020) Tumor MHC Expression Guides First-Line Immunotherapy Selection in Melanoma. Cancers (Basel), 12, Article No. 3374.
https://doi.org/10.3390/cancers12113374
[16]  Liu, D., Schilling, B., Liu, D., et al. (2019) Integrative Molecular and Clinical Modeling of Clinical Outcomes to PD1 Blockade in Patients with Metastatic Melanoma. Nature Medicine, 25, 1916-1927.
https://doi.org/10.1038/s41591-019-0654-5
[17]  Hugo, W., Zaretsky, J.M., Sun, L., et al. (2016) Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell, 165, 35-44.
https://doi.org/10.1016/j.cell.2016.02.065
[18]  桑宸, 高强. 肝内胆管癌起源细胞的研究进展和临床启示[J]. 中国肿瘤临床, 2023, 50(6): 286-290.
[19]  Yoshihama, S., Roszik, J., Downs, I., et al. (2016) NLRC5/MHC Class I Transactivator Is a Target for Immune Evasion in Cancer. Proceedings of the National Academy of Sciences of the United States of America, 113, 5999-6004.
https://doi.org/10.1073/pnas.1602069113
[20]  Fangazio, M., Ladewig, E., Gomez, K., et al. (2021) Genetic Mechanisms of HLA-I Loss and Immune Escape in Diffuse Large B Cell Lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 118, e2104504118.
https://doi.org/10.1073/pnas.2104504118
[21]  Booman, M., Douwes, J., Glas, A.M., et al. (2006) Mechanisms and Effects of Loss of Human Leukocyte Antigen Class II Expression in Immune-Privileged Site-Associated B-Cell Lymphoma. Clinical Cancer Research, 12, 2698-2705.
https://doi.org/10.1158/1078-0432.CCR-05-2617
[22]  Rimsza, L.M., Farinha, P., Fuchs, D.A., et al. (2007) HLA-DR Protein Status Predicts Survival in Patients with Diffuse Large B-Cell Lymphoma Treated on the MACOP-B Chemotherapy Regimen. Leukemia & Lymphoma, 48, 542-546.
https://doi.org/10.1080/10428190601078605
[23]  Brown, P.J., Wong, K.K., Felce, S.L., et al. (2016) FOXP1 Suppresses Immune Response Signatures and MHC Class II Expression in Activated B-Cell-Like Diffuse Large B-Cell Lymphomas. Leukemia, 30, 605-616.
https://doi.org/10.1038/leu.2015.299

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133