全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

卒中后脑–心相互作用
Interactions between Brain and Heart after Stroke

DOI: 10.12677/acm.2024.1441267, PP. 2092-2098

Keywords: 脑损伤,脑缺血,心力衰竭,炎症,卒中
Brain Injury
, Cerebral Ischemia, Heart Failure, Inflammation, Stroke

Full-Text   Cite this paper   Add to My Lib

Abstract:

神经心脏病学是一个新兴的专业领域,致力于研究和解决大脑和心脏之间的相互作用,其重点在于探究心脏损伤对大脑的影响以及脑损伤对心脏的影响。据统计,大多数卒中后死亡归因于神经系统损伤,而心血管并发症则是卒中后死亡的次要原因。临床和实验研究的累积证据表明脑损伤与心功能障碍之间存在因果关系。因此,我们需要确定心功能不全是由中风引发的,还是一个独立的并发症,或者说是中风的根本原因。中风引起的心脏损伤可能导致死亡或潜在的终身心脏问题,例如心力衰竭,也可能是轻度和可恢复的损伤,例如神经源性应激性心肌病和Takotsubo心肌病。卒中后脑损伤的位置和偏侧化在脑–心相互作用中发挥着重要作用;心脏并发症的临床生物标志物和表现;以及可能的机制,如下丘脑–垂体–肾上腺轴、儿茶酚胺激增、交感神经和副交感神经调节、肠道微生物组、免疫应答和全身炎症等,也是研究的焦点。本文综述了卒中后脑–心相互作用的重要内容。
Neurocardiology is an emerging specialty that studies and addresses the interactions between the brain and the heart, with a focus on exploring the effects of cardiac injury on the brain and the effects of neurological damage on the heart. Statistically, neurological damage stands as the leading cause of post-stroke mortality, while cardiovascular complications emerge as a significant secondary contributor. Cumulative evidence from clinical and experimental studies suggests a causal relationship between brain injury and cardiac dysfunction. Therefore, we need to determine whether cardiac dysfunction is caused by stroke, or whether it is an independent complication, or the underlying cause of stroke. Heart injury caused by stroke can lead to death or potentially lifelong heart problems, such as heart failure, or it can be milder and reversible conditions, such as neurogenic stress cardiomyopathy and Takotsubo cardiomyopathy. The location and lateralization of post-stroke brain damage play important roles in brain-heart interactions, alongside clinical biomarkers and manifestations of cardiac complications, along with potential mechanisms such as the hypothalamic-pituitary-adrenal axis, catecholamine surge, regulation by the sympathetic and parasympathetic nervous systems, gut microbiota, immune response, and systemic inflammation. This review focuses on exploring the interactions between the brain and the heart following a stroke.

References

[1]  Byer, E., Ashman, R. and Toth, L.A. (1947) Electrocardiograms with Large, Upright T Waves and Long Q-T Intervals. American Heart Journal, 33, 796-806.
https://doi.org/10.1016/0002-8703(47)90025-2
[2]  Samuels, M.A. (2007) The Brain-Heart Connection. Circulation, 116, 77-84.
https://doi.org/10.1161/CIRCULATIONAHA.106.678995
[3]  Tranmer, B.I., Keller, T.S., Kindt, G.W., et al. (1992) Loss of Cerebral Regulation during Cardiac Output Variations in Focal Cerebral Ischemia. Journal of Neurosurgery, 77, 253-259.
https://doi.org/10.3171/jns.1992.77.2.0253
[4]  Ay, H., Koroshetz, W.J., Benner, T., et al. (2006) Neuroanatomic Correlates of Stroke-Related Myocardial Injury. Neurology, 66, 1325-1329.
https://doi.org/10.1212/01.wnl.0000206077.13705.6d
[5]  Oppenheimer, S.M. (1994) Neurogenic Cardiac Effects of Cerebrovascular Disease. Current Opinion in Neurology, 7, 20-24.
https://doi.org/10.1097/00019052-199402000-00005
[6]  Krishnamoorthy, V., Mackensen, G.B., Gibbons, E.F., et al. (2016) Cardiac Dysfunction after Neurologic Injury: What Do We Know and Where Are We Going? Chest, 149, 1325-1331.
https://doi.org/10.1016/j.chest.2015.12.014
[7]  Rosmond, R. and Bj?rntorp, P. (2000) The Hypothalamic-Pituitary-Adrenal Axis Activity as a Predictor of Cardiovascular Disease, Type 2 Diabetes and Stroke. Journal of Internal Medicine, 247, 188-197.
https://doi.org/10.1046/j.1365-2796.2000.00603.x
[8]  Spiga, F., Walker, J.J., Terry, J.R., et al. (2014) HPA Axis-Rhythms. Comprehensive Physiology, 4, 1273-1298.
https://doi.org/10.1002/cphy.c140003
[9]  Samuels, M.A. (1987) Neurogenic Heart Disease: A Unifying Hypothesis. American Journal of Cardiology, 60, 15j-19j.
https://doi.org/10.1016/0002-9149(87)90678-3
[10]  Moss, R.L., Fitzsimons, D.P. and Ralphe, J.C. (2015) Cardiac MyBP-C Regulates the Rate and Force of Contraction in Mammalian Myocardium. Circulation Research, 116, 183-192.
https://doi.org/10.1161/CIRCRESAHA.116.300561
[11]  Du, Y., Demillard, L.J. and Ren, J. (2021) Catecholamine-Induced Cardiotoxicity: A Critical Element in the Pathophysiology of Stroke-Induced Heart Injury. Life Sciences, 287, Article ID: 120106.
https://doi.org/10.1016/j.lfs.2021.120106
[12]  Ozdemir, O. and Hachinski, V. (2008) Brain Lateralization and Sudden Death: Its Role in the Neurogenic Heart Syndrome. Journal of the Neurological Sciences, 268, 6-11.
https://doi.org/10.1016/j.jns.2007.11.009
[13]  Min, J., Farooq, M.U., Greenberg, E., et al. (2009) Cardiac Dysfunction after Left Permanent Cerebral Focal Ischemia: the Brain and Heart Connection. Stroke, 40, 2560-2563.
https://doi.org/10.1161/STROKEAHA.108.536086
[14]  Laowattana, S., Zeger, S.L., Lima, J.A., et al. (2006) Left Insular Stroke Is Associated with Adverse Cardiac Outcome. Neurology, 66, 477-483.
https://doi.org/10.1212/01.wnl.0000202684.29640.60
[15]  Abbott, N.J., Patabendige, A.A., Dolman, D.E., et al. (2010) Structure and Function of the Blood-Brain Barrier. Neurobiology of Disease, 37, 13-25.
https://doi.org/10.1016/j.nbd.2009.07.030
[16]  Sandoval, K.E. and Witt, K.A. (2008) Blood-Brain Barrier Tight Junction Permeability and Ischemic Stroke. Neurobiology of Disease, 32, 200-219.
https://doi.org/10.1016/j.nbd.2008.08.005
[17]  Chen, Z., Venkat, P., Seyfried, D., et al. (2017) Brain-Heart Interaction: Cardiac Complications after Stroke. Circulation Research, 121, 451-468.
https://doi.org/10.1161/CIRCRESAHA.117.311170
[18]  Sun, J., Wang, F., Ling, Z., et al. (2016) Clostridium butyricum Attenuates Cerebral Ischemia/Reperfusion Injury in Diabetic Mice via Modulation of Gut Microbiota. Brain Research, 1642, 180-188.
https://doi.org/10.1016/j.brainres.2016.03.042
[19]  Bercik, P., Collins, S.M. and Verdu, E.F. (2012) Microbes and the Gut-Brain Axis. Neurogastroenterology & Motility, 24, 405-413.
https://doi.org/10.1111/j.1365-2982.2012.01906.x
[20]  Winek, K., Engel, O., Koduah, P., et al. (2016) Depletion of Cultivatable Gut Microbiota by Broad-Spectrum Antibiotic Pretreatment Worsens Outcome after Murine Stroke. Stroke, 47, 1354-1363.
https://doi.org/10.1161/STROKEAHA.115.011800
[21]  Benakis, C., Brea, D., Caballero, S., et al. (2016) Commensal Microbiota Affects Ischemic Stroke Outcome by Regulating Intestinal γδ T Cells. Nature Medicine, 22, 516-523.
https://doi.org/10.1038/nm.4068
[22]  Nagatomo, Y. and Tang, W.H. (2015) Intersections between Microbiome and Heart Failure: Revisiting the Gut Hypothesis. Journal of Cardiac Failure, 21, 973-980.
https://doi.org/10.1016/j.cardfail.2015.09.017
[23]  Crapser, J., Ritzel, R., Verma, R., et al. (2016) Ischemic Stroke Induces Gut Permeability and Enhances Bacterial Translocation Leading to Sepsis in Aged Mice. Aging (Albany NY), 8, 1049-1063.
https://doi.org/10.18632/aging.100952
[24]  Opthof, T., Dekker, L.R., Coronel, R., et al. (1993) Interaction of Sympathetic and Parasympathetic Nervous System on Ventricular Refractoriness Assessed by Local Fibrillation Intervals in the Canine Heart. Cardiovascular Research, 27, 753-759.
https://doi.org/10.1093/cvr/27.5.753
[25]  Oppenheimer, S.M., Cechetto, D.F. and Hachinski, V.C. (1990) Cerebrogenic Cardiac Arrhythmias. Cerebral Electrocardiographic Influences and Their Role in Sudden Death. Archives of Neurology, 47, 513-519.
https://doi.org/10.1001/archneur.1990.00530050029008
[26]  Oppenheimer, S.M. and Hachinski, V.C. (1992) The Cardiac Consequences of Stroke. Neurologic Clinics, 10, 167-176.
https://doi.org/10.1016/S0733-8619(18)30239-1
[27]  Chiu, Y.T., Chen, Y.T., Lin, N.N., et al. (2005) Sympathetic Activity and Myocardial Damage after Stimulation of Dorsal Medulla and Vagotomy in a Novel Animal Model. International Journal of Cardiology, 100, 401-407.
https://doi.org/10.1016/j.ijcard.2004.08.026
[28]  Rona, G. (1985) Catecholamine Cardiotoxicity. Journal of Molecular and Cellular Cardiology, 17, 291-306.
https://doi.org/10.1016/S0022-2828(85)80130-9
[29]  Takahashi, C., Hinson, H.E. and Baguley, I.J. (2015) Autonomic Dysfunction Syndromes after Acute Brain Injury. In: Handbook of Clinical Neurology, Vol. 128, Elsevier, Amsterdam, 539-551.
https://doi.org/10.1016/B978-0-444-63521-1.00034-0
[30]  Moya, A., Sutton, R., Ammirati, F., et al. (2009) Guidelines for the Diagnosis and Management of Syncope (Version 2009). European Heart Journal, 30, 2631-2671.
https://doi.org/10.1093/eurheartj/ehp298
[31]  Meyer, K.S. (2014) Understanding Paroxysmal Sympathetic Hyperactivity after Traumatic Brain Injury. Surgical Neurology International, 5, S490-S492.
https://doi.org/10.4103/2152-7806.144632
[32]  Rabinstein, A.A. and Benarroch, E.E. (2008) Treatment of Paroxysmal Sympathetic Hyperactivity. Current Treatment Options in Neurology, 10, 151-157.
https://doi.org/10.1007/s11940-008-0016-y
[33]  Milinis, K. and Fisher, M. (2012) Takotsubo Cardiomyopathy: Pathophysiology and Treatment. Postgraduate Medical Journal, 88, 530-538.
https://doi.org/10.1136/postgradmedj-2012-130761
[34]  Bybee, K.A. and Prasad, A. (2008) Stress-Related Cardiomyopathy Syndromes. Circulation, 118, 397-409.
https://doi.org/10.1161/CIRCULATIONAHA.106.677625
[35]  Mori, H., Ishikawa, S., Kojima, S., et al. (1993) Increased Responsiveness of Left Ventricular Apical Myocardium to Adrenergic Stimuli. Cardiovascular Research, 27, 192-198.
https://doi.org/10.1093/cvr/27.2.192
[36]  Templin, C., Ghadri, J.R., Diekmann, J., et al. (2015) Clinical Features and Outcomes of Takotsubo (Stress) Cardiomyopathy. The New England Journal of Medicine, 373, 929-938.
https://doi.org/10.1056/NEJMoa1406761
[37]  Rabinstein, A.A. (2014) Sudden Cardiac Death. In: Handbook of Clinical Neurology, Vol. 119, Elsevier, Amsterdam, 19-24.
https://doi.org/10.1016/B978-0-7020-4086-3.00002-3
[38]  Hubner, P., Meron, G., Kürkciyan, I., et al. (2014) Neurologic Causes of Cardiac Arrest and Outcomes. Journal of Emergency Medicine, 47, 660-667.
https://doi.org/10.1016/j.jemermed.2014.07.029
[39]  S?r?s, P. and Hachinski, V. (2012) Cardiovascular and Neurological Causes of Sudden Death after Ischaemic Stroke. The Lancet Neurology, 11, 179-188.
https://doi.org/10.1016/S1474-4422(11)70291-5
[40]  Leor, J., Poole, W.K. and Kloner, R.A. (1996) Sudden Cardiac Death Triggered by an Earthquake. The New England Journal of Medicine, 334, 413-419.
https://doi.org/10.1056/NEJM199602153340701
[41]  Schwartz, P.J. (2014) Cardiac Sympathetic Denervation to Prevent Life-Threatening Arrhythmias. Nature Reviews Cardiology, 11, 346-353.
https://doi.org/10.1038/nrcardio.2014.19
[42]  Roston, T.M., Vinocur, J.M., Maginot, K.R., et al. (2015) Catecholaminergic Polymorphic Ventricular Tachycardia in Children: Analysis of Therapeutic Strategies and Outcomes from an International Multicenter Registry. Circulation: Arrhythmia and Electrophysiology, 8, 633-642.
https://doi.org/10.1161/CIRCEP.114.002217
[43]  Oka, T., Ozawa, Y. and Ohkubo, Y. (2001) Thoracic Epidural Bupivacaine Attenuates Supraventricular Tachyarrhythmias after Pulmonary Resection. Anesthesia & Analgesia, 93, 253-259.
https://doi.org/10.1213/00000539-200108000-00003
[44]  Li, M., Zheng, C., Sato, T., et al. (2004) Vagal Nerve Stimulation Markedly Improves Long-Term Survival after Chronic Heart Failure in Rats. Circulation, 109, 120-124.
https://doi.org/10.1161/01.CIR.0000105721.71640.DA

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133