|
2型糖尿病患者尿蛋白的影响因素分析
|
Abstract:
目的:本研究旨在分析2型糖尿病(T2DM)患者尿蛋白的影响因素。方法:本文研究对象为我院内分泌科收治的T2DM患者,病例数为300例。本研究设定UACR水平标准值对研究对象进行分组,正常白蛋白尿组标准为UACR < 30 mg/g,微量白蛋白尿组标准为30 ≤ UACR ≤ 300 mg/g,大量白蛋白尿组标准为UACR > 300 mg/g。观察三组患者的25(OH)D、空腹胰岛素(FINS)、体质指数(BMI)、空腹血糖(FBS)、胰岛素抵抗指数(HOMA2-IR)、胰岛β细胞功能指数(HOMA2-β)等指标。结果:1) 三组患者的糖尿病病程、年龄、糖尿病视网膜病变构成比、糖尿病周围神经病变构成比、HOMA2-IR、HOMA2-β、FBS、糖化血红蛋白(HbA1c)、25羟维生素D (25(OH)D)、谷丙转氨酶(ALT)、谷草转氨酶(AST)、总胆红素(TBIL)、直接胆红素(DBIL)、血浆白蛋白(ALB)、血钙(Ca)、血肌酐(SCr)、血尿素氮(BUN)、血尿酸(UA)、C反应蛋白(CRP)、白细胞计数(WBC)、中性粒细胞计数(N)差异具有统计学意义(P < 0.05)。2) 皮尔逊相关性分析揭示了UACR与糖尿病病程、HOMA2-IR、Scr、CRP、白细胞计数(WBC)、中性粒细胞计数(N)之间的正相关关系(P < 0.05),以及UACR与25(OH)D、ALB、TBIL、DBIL及Ca之间的负相关关系(P < 0.05)。3) 二元Logistic回归分析提示HOMA2-IR、HbAlc、FBS、TC、TG、LDL-C为T2DM患者出现尿蛋白排泄的影响因素(P < 0.05)。结论:胰岛素抵抗、HbAlc、TC、TG、LDL-C为T2DM患者尿蛋白排泄的独立危险因素,而25(OH)D与尿蛋白排泄之间存在负相关关系,但尚未证明25(OH)D是T2DM患者尿蛋白排泄的保护性因素。
Objective: The aim of this study was to analyse the influencing factors of urinary protein in patients with type 2 diabetes mellitus (T2DM). Methods: The study subjects in this paper were T2DM patients admitted to the Department of Endocrinology of our hospital, and the number of cases was 300. In this study, we set the standard value of UACR level to group the study subjects, and the standard of normal albuminuria group was UACR < 30 mg/g, the standard of microalbuminuria group was 30 ≤ UACR ≤ 300 mg/g, and the standard of massive albuminuria group was UACR > 300 mg/g. We observed the 25(OH)D, fasting insulin (FINS), body mass index (BMI), fasting blood sugar (FBS), insulin resistance index (HOMA2-IR), and pancreatic β-cell function index (HOMA2-β). Results: 1) The duration of diabetes, age, diabetic retinopathy composition ratio, diabetic peripheral neuropathy composition ratio, HOMA2-IR, HOMA2-β, FBS, glycated haemoglobin (HbA1c), 25 hydroxyvitamin D (25(OH)D), alanine aminotransferase (ALT), azelaic aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), plasma albumin (ALB), blood calcium (Ca), blood creatinine (SCr), blood urea nitrogen (BUN), blood uric acid (UA), C-reactive protein (CRP), white blood cell count (WBC), and neutrophil count (N) in the three groups were statistically significant (P < 0.05). 2) Pearson correlation analysis revealed positive correlations among UACR, diabetes duration, HOMA2-IR, Scr, CRP, white blood cell count (WBC), and neutrophil count (N) (P < 0.05), as well as negative correlations among UACR and 25(OH)D, ALB, TBIL, DBIL and Ca (P
[1] | Rajamanickam, A., Munisankar, S., Dolla, C., et al. (2020) Helminth Infection Modulates Ystemic Pro-Inflammatory Cytokines and Chemokines Implicated in Type 2 Diabetes Mellitus Pathogenesis. PLOS Neglected Tropical Diseases, 14, e0008101. https://doi.org/10.1371/journal.pntd.0008101 |
[2] | Sun, H., Saeedi, P., Karuranga, S., et al. (2022) IDF Diabetes Atlas: Global, Regional and Country-Level Diabetes Prevalence Estimates for 2021 and Projections for 2045. Diabetes Research and Clinical Practice, 183, Article ID: 109119. https://doi.org/10.1016/j.diabres.2021.109119 |
[3] | Zhang, Y. and Zhang, L. (2022) The Relationship between Thyroid-Stimulating Hormone and Insulin Resistance in Incipient Elderly Type 2 Diabetics with Normal Thyroid Function. Journal of Healthcare Engineering, 2022, Article ID: 9447363. https://doi.org/10.1155/2022/9447363 |
[4] | Wang, C., Wang, L., Liang, K., Yan, F., Hou, X., Liu, F. and Chen, L. (2020) Poor Control of Plasma Triglycerides Is Associated with Early Decline of Estimated Glomerular Filtration Rates in New-Onset Type 2 Diabetes in China: Results from a 3-Year Follow-Up Study. Journal of Diabetes Research, 2020, Article ID: 3613041. https://doi.org/10.1155/2020/3613041 |
[5] | Ugarte, F., Santapau, D., Gallardo, V., Garfias, C., Yizmeyián, A., Villanueva, S., Sepúlveda, C., Rocco, J., Pasten, C., Urquidi, C., Cavada, G., San Martin, P., Cano, F. and Irarrázabal, C.E. (2022) Urinary Extracellular Vesicles as a Source of NGAL for Diabetic Kidney Disease Evaluation in Children and Adolescents with Type 1 Diabetes Mellitus. Frontiers in Endocrinology (Lausanne), 12, Article ID: 654269. https://doi.org/10.3389/fendo.2021.654269 |
[6] | Pan, K., Nelson, R.A., Wactawski-Wende, J., et al. (2020) Insulin Resistance and Cancer-Specific and All-Cause Mortality in Postmenopausal Women: The Women’s Health Initiative. Journal of the National Cancer Institute, 112, 170-178. https://doi.org/10.1093/jnci/djz069 |
[7] | Gu, S., Wang, A., Ning, G., Zhang, L. and Mu, Y. (2020) Insulin Resistance Is Associated with Urinary Albumin-Creatinine Ratio in Normal Weight Individuals with Hypertension and Diabetes: The REACTION Study. Journal of Diabetes, 12, 406-416. https://doi.org/10.1111/1753-0407.13010 |
[8] | Bikle, D. (2009) Nonclassic Actions of Vitamin D. The Journal of Clinical Endocrinology & Metabolism, 94, 26-34. https://doi.org/10.1210/jc.2008-1454 |
[9] | Sánchez-Hernández, R.M., García-Cantón, C., Lorenzo, D.L., et al. (2015) The Specific Relationship between Vitamin D Deficiency and Diabetic Nephropathy among Patients with Advanced Chronic Kidney Disease: A Cross-Sectional Study in Gran Canaria, Spain. Clinical Nephrology, 83, 218-224. https://doi.org/10.5414/CN108446 |
[10] | Anderson, R. (2018) Vitamin D Homeostasis Is Compromised Due to Increased Urinary Excretion of the 25-Hydroxycholecalciferol-Vitamin D-Binding Protein Complex in the Zucker Diabetic Fatty Rat. American Journal of Physiology-Endocrinology and Metabolism, 299, E959-E967. |
[11] | 中国2型糖尿病防治指南(2020年版) (上) [J]. 中国实用内科杂志, 2021, 41(8): 668-695. |
[12] | Deng, Y., Li, N., Wu, Y., Wang, M., Yang, S., Zheng, Y., Deng, X., Xiang, D., Zhu, Y., Xu, P., Zhai, Z., Zhang, D., Dai, Z. and Gao, J. (2021) Global, Regional, and National Burden of Diabetes-Related Chronic Kidney Disease from 1990 to 2019. Frontiers in Endocrinology (Lausanne), 12, Article ID: 672350. https://doi.org/10.3389/fendo.2021.672350 |
[13] | Bikbov, B., Purcell, C., Levey, A.S., et al. (2020) Global, Regional, and National Burden of Chronic Kidney Disease, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 395, 709-733. https://doi.org/10.1016/S0140-6736(20)30045-3 |
[14] | Pilz, S., Rutters, F., Nijpels, G., Stehouwer, C.D., H?jlund, K., Nolan, J.J., Balkau, B., Dekker, J.M. and RISC Investigators (2014) Insulin Sensitivity and Albuminuria: The RISC Study. Diabetes Care, 37, 1597-1603. https://doi.org/10.2337/dc13-2573 |
[15] | 杨花, 张丽, 陈格. 吡格列酮联合前列地尔治疗糖尿病肾病的临床疗效及其对肾功能及血管内皮功能的影响[J]. 临床合理用药杂志, 2022, 15(27): 122-124. |
[16] | Spoto, B., Pisano, A. and Zoccali, C. (2016) Insulin Resistance in Chronic Kidney Disease: A Systematic Review. American Journal of Physiology-Renal Physiology, 311, F1087-F1108. https://doi.org/10.1152/ajprenal.00340.2016 |
[17] | Lay, A.C., Hurcombe, J.A., Betin, V.M.S., Barrington, F., Rollason, R., Ni, L., Gillam, L., Pearson, G.M.E., ?stergaard, M.V., Hamidi, H., Lennon, R., Welsh, G.I. and Coward, R.J.M. (2017) Prolonged Exposure of Mouse and Human Podocytes to Insulin Induces Insulin Resistance through Lysosomal and Proteasomal Degradation of the Insulin Receptor. Diabetologia, 60, 2299-2311. https://doi.org/10.1007/s00125-017-4394-0 |
[18] | 王伟, 李宏亮, 杨文英. 胰岛素抵抗、高胰岛素血症与肾损伤关系的研究进展[J]. 中国糖尿病杂志, 2008, 16(1): 58-60. |
[19] | Hu, X., Liu, W., Yan, Y., Liu, H., Huang, Q., Xiao, Y., Gong, Z. and Du, J. (2019) Vitamin D Protects against Diabetic Nephropathy: Evidence-Based Effectiveness and Mechanism. European Journal of Pharmacology, 845, 91-98. https://doi.org/10.1016/j.ejphar.2018.09.037 |
[20] | He, L., Zhou, L., Zhao, T.Y., Witherspoon, A.T. and Ouyang, L. (2022) Effect of Vitamin D on Urinary Albumin Excretion in Diabetic Nephropathy Patients: A Meta-Analysis of Randomized Controlled Trials. Iranian Journal of Kidney Diseases, 16, 273-279. https://doi.org/10.46439/nephrology.3.012 |
[21] | Esfandiari, A., Pourghassem Gargari, B., Noshad, H., Sarbakhsh, P., Mobasseri, M., Barzegari, M. and Arzhang, P. (2019) The Effects of Vitamin D3 Supplementation on Some Metabolic and Inflammatory Markers in Diabetic Nephropathy Patients with Marginal Status of Vitamin D: A Randomized Double Blind Placebo Controlled Clinical Trial. Diabetology Metabolic Syndrome, 13, 278-283. https://doi.org/10.1016/j.dsx.2018.09.013 |