|
溶栓后脑出血的相关危险因素的相关研究
|
Abstract:
对于发病在6小时内的患者,溶栓治疗已经成为首选,但目前针对溶栓后患者的预后尚不完全明确,其并发症的风险发生机制尚不明确,本文阐述近些年溶栓后的相关危险因素,希冀对以后的研究提供新思路。
Thrombolytic therapy has become the first choice for patients who develop symptoms within 6 hours. However, the prognosis of patients after thrombolysis is not yet fully understood, and the risk mechanism of complications is not yet clear. This article elaborates on the relevant risk factors after thrombolysis in recent years, hoping to provide new ideas for future research.
[1] | Iadecola, C., Buckwalter, M.S. and Anrather, J. (2020) Immune Responses to Stroke: Mechanisms, Modulation, and Therapeutic Potential. The Journal of Clinical Investigation, 130, 2777-2788. https://doi.org/10.1172/JCI135530 |
[2] | Eltzschig, H.K. and Eckle, T. (2011) Ischemia and Reperfusion—From Mechanism to Translation. Nature Medicine, 17, 1391-1401. https://doi.org/10.1038/nm.2507 |
[3] | Jayaraj, R.L., Azimullah, S., Beiram, R., Jalal, F.Y. and Rosenberg, G.A. (2019) Neuroinflammation: Friend and Foe for Ischemic Stroke. Journal of Neuroinflammation, 16, Article No. 142. https://doi.org/10.1186/s12974-019-1516-2 |
[4] | Maestrini, I., Strbian, D., Gautier, S., et al. (2015) Higher Neutrophil Counts before Thrombolysis for Cerebral Ischemia Predict Worse Outcomes. Neurology, 85, 1408-1416. https://doi.org/10.1212/WNL.0000000000002029 |
[5] | Allen, C.L. and Bayraktutan, U. (2009) Oxidative Stress and Its Role in the Pathogenesis of Ischaemic Stroke. International Journal of Stroke, 4, 461-470. https://doi.org/10.1111/j.1747-4949.2009.00387.x |
[6] | Rosell, A., Ortega-Aznar, A., Alvarez-Sabín, J., et al. (2006) Increased Brain Expression of Matrix Metalloproteinase-9 after Ischemic and Hemorrhagic Human Stroke. Stroke, 37, 1399-1406. https://doi.org/10.1161/01.STR.0000223001.06264.af |
[7] | Manda-Handzlik, A. and Demkow, U. (2019) The Brain Entangled: The Contribution of Neutrophil Extracellular Traps to the Diseases of the Central Nervous System. Cells, 8, Article 1477. https://doi.org/10.3390/cells8121477 |
[8] | Otxoa-De-Amezaga, A., Gallizioli, M., Pedragosa, J., et al. (2019) Location of Neutrophils in Different Compartments of the Damaged Mouse Brain after Severe Ischemia/Reperfusion. Stroke, 50, 1548-1557. https://doi.org/10.1161/STROKEAHA.118.023837 |
[9] | Lux, D., Alakbarzade, V., Bridge, L., et al. (2020) The Association of Neutrophil-Lymphocyte Ratio and Lymphocyte-Monocyte Ratio with 3-Month Clinical Outcome after Mechanical Thrombectomy Following Stroke. Journal of Neuroinflammation, 17, Article No. 60. https://doi.org/10.1186/s12974-020-01739-y |
[10] | Gong, P., Liu, Y., Gong, Y., et al. (2021) The Association of Neutrophil to Lymphocyte Ratio, Platelet to Lymphocyte Ratio, and Lymphocyte to Monocyte Ratio with Post-Thrombolysis Early Neurological Outcomes in Patients with Acute Ischemic Stroke. Journal of Neuroinflammation, 18, Article No. 51. https://doi.org/10.1186/s12974-021-02090-6 |
[11] | Amki, M.E., Glück, C., Binder, N., et al. (2020) Neutrophils Obstructing Brain Capillaries Are a Major Cause of No-Reflow in Ischemic Stroke. Cell Reports, 33, Article ID: 108260. |
[12] | Shi, K., Zou, M., Jia, D.M., et al. (2021) TPA Mobilizes Immune Cells That Exacerbate Hemorrhagic Transformation in Stroke. Circulation Research, 128, 62-75. https://doi.org/10.1161/CIRCRESAHA.120.317596 |
[13] | Coden, M.E. and Berdnikovs, S. (2020) Eosinophils in Wound Healing and Epithelial Remodeling: Is Coagulation a Missing Link. Journal of Leukocyte Biology, 108, 93-103. https://doi.org/10.1002/JLB.3MR0120-390R |
[14] | Ritzel, R.M., Lai, Y.J., Crapser, J.D., et al. (2018) Aging Alters the Immunological Response to Ischemic Stroke. Acta Neuropathologica, 136, 89-110. https://doi.org/10.1007/s00401-018-1859-2 |
[15] | Wang, J., Ma, L., Lin, T., Li, S.J., Chen, L.L. and Wang, D.Z. (2017) The Significance of Eosinophils in Predicting the Severity of Acute Ischemic Stroke. Oncotarget, 8, 104238-104246. https://doi.org/10.18632/oncotarget.22199 |
[16] | Jucevi?iūt?, N., Miku?is, P. and Balnyt?, R. (2019) Absolute Blood Eosinophil Count Could Be a Potential Biomarker for Predicting Haemorrhagic Transformation after Intravenous Thrombolysis for Acute Ischaemic Stroke. BMC Neurology, 19, Article No. 127. https://doi.org/10.1186/s12883-019-1359-6 |
[17] | Bolton, S.J., McNulty, C.A., Thomas, R.J., Hewitt, C.R. and Wardlaw, A.J. (2003) Expression of and Functional Responses to Protease-Activated Receptors on Human Eosinophils. Journal of Leukocyte Biology, 74, 60-68. https://doi.org/10.1189/jlb.0702351 |
[18] | Wang, X., Lee, S.R., Arai, K., et al. (2003) Lipoprotein Receptor-Mediated Induction of Matrix Metalloproteinase by Tissue Plasminogen Activator. Nature Medicine, 9, 1313-1317. https://doi.org/10.1038/nm926 |
[19] | Goulay, R., Mena Romo, L., Hol, E.M. and Dijkhuizen, R.M. (2020) From Stroke to Dementia: A Comprehensive Review Exposing Tight Interactions between Stroke and Amyloid-β Formation. Translational Stroke Research, 11, 601-614. https://doi.org/10.1007/s12975-019-00755-2 |
[20] | Yao, Y. (2019) Basement Membrane and Stroke. Journal of Cerebral Blood Flow and Metabolism, 39, 3-19. https://doi.org/10.1177/0271678X18801467 |
[21] | Yang, C., Hawkins, K.E., Doré, S. and Candelario-Jalil, E. (2019) Neuroinflammatory Mechanisms of Blood-Brain Barrier Damage in Ischemic Stroke. American Journal of Physiology: Cell Physiology, 316, C135-C153. https://doi.org/10.1152/ajpcell.00136.2018 |
[22] | Jickling, G.C., Liu, D., Stamova, B., et al. (2014) Hemorrhagic Transformation after Ischemic Stroke in Animals and Humans. Journal of Cerebral Blood Flow and Metabolism, 34, 185-199. https://doi.org/10.1038/jcbfm.2013.203 |
[23] | Spronk, E., Sykes, G., Falcione, S., et al. (2021) Hemorrhagic Transformation in Ischemic Stroke and the Role of Inflammation. Frontiers in Neurology, 12, Article 661955. https://doi.org/10.3389/fneur.2021.661955 |
[24] | Whiteley, W.N., Thompson, D., Murray, G., et al. (2014) Targeting Recombinant Tissue-Type Plasminogen Activator in Acute Ischemic Stroke Based on Risk of Intracranial Hemorrhage or Poor Functional Outcome: An Analysis of the Third International Stroke Trial. Stroke, 45, 1000-1006. https://doi.org/10.1161/STROKEAHA.113.004362 |
[25] | Yepes, M., Sandkvist, M., Moore, E.G., Bugge, T.H., Strickland, D.K. and Lawrence, D.A. (2003) Tissue-Type Plasminogen Activator Induces Opening of the Blood-Brain Barrier via the LDL Receptor-Related Protein. The Journal of Clinical Investigation, 112, 1533-1540. https://doi.org/10.1172/JCI200319212 |
[26] | Su, E.J., Fredriksson, L., Geyer, M., et al. (2008) Activation of PDGF-CC by Tissue Plasminogen Activator Impairs Blood-Brain Barrier Integrity during Ischemic Stroke. Nature Medicine, 14, 731-737. https://doi.org/10.1038/nm1787 |
[27] | Sim?o, F., Ustunkaya, T., Clermont, A.C. and Feener, E.P. (2017) Plasma Kallikrein Mediates Brain Hemorrhage and Edema Caused by Tissue Plasminogen Activator Therapy in Mice after Stroke. Blood, 129, 2280-2290. https://doi.org/10.1182/blood-2016-09-740670 |
[28] | Wang, X.Y. and Eng, H.L. (2003) Triggers and Mediators of Hemorrhagic Transformation in Cerebral Ischemia. Molecular Neurobiology, 28, 229-244. https://doi.org/10.1385/MN:28:3:229 |
[29] | Simi, A., Tsakiri, N., Wang, P. and Rothwell, N.J. (2007) Interleukin-1 and Inflammatory Neurodegeneration. Biochemical Society Transactions, 35, 1122-1126. https://doi.org/10.1042/BST0351122 |
[30] | Gattringer, T., Valdes Hernandez, M., Heye, A., et al. (2020) Predictors of Lesion Cavitation after Recent Small Subcortical Stroke. Translational Stroke Research, 11, 402-411. https://doi.org/10.1007/s12975-019-00741-8 |
[31] | Okada, T. and Suzuki, H. (2017) Toll-Like Receptor 4 as a Possible Therapeutic Target for Delayed Brain Injuries after Aneurysmal Subarachnoid Hemorrhage. Neural Regeneration Research, 12, 193-196. https://doi.org/10.4103/1673-5374.200795 |
[32] | Peeyush Kumar, T., McBride, D.W., Dash, P.K., Matsumura, K., Rubi, A. and Blackburn, S.L. (2019) Endothelial Cell Dysfunction and Injury in Subarachnoid Hemorrhage. Molecular Neurobiology, 56, 1992-2006. https://doi.org/10.1007/s12035-018-1213-7 |
[33] | Kaur, J., Zhao, Z., Klein, G.M., Lo, E.H. and Buchan, A.M. (2004) The Neurotoxicity of Tissue Plasminogen Activator. Journal of Cerebral Blood Flow and Metabolism, 24, 945-963. https://doi.org/10.1097/01.WCB.0000137868.50767.E8 |
[34] | Dhungana, H., Malm, T., Denes, A., et al. (2013) Aging Aggravates Ischemic Stroke-Induced Brain Damage in Mice with Chronic Peripheral Infection. Aging Cell, 12, 842-850. https://doi.org/10.1111/acel.12106 |
[35] | Crapser, J., Ritzel, R., Verma, R., Venna, V.R. and Mccullough, L.D. (2016) Ischemic Stroke Induces Gut Permeability and Enhances Bacterial Translocation Leading to Sepsis in Aged Mice. Aging, 8, 1049-1060. https://doi.org/10.18632/aging.100952 |