|
靶向铁死亡防治重大疾病研究进展
|
Abstract:
铁死亡(Ferroptosis)是一种铁依赖的细胞死亡途径,其特征在于引起脂质过氧化物的积聚,同时过量Fe2 通过芬顿反应(Fenton reaction)氧化细胞膜上不饱和脂肪酸(polyunsaturated fatty acids, PUFAs),从而引发铁死亡。已经有报道铁死亡在包括肿瘤、心血管疾病、肝脏疾病等重大疾病中发挥重要的防治作用。本综述总结了铁死亡在肿瘤、心血管疾病、肝脏疾病以及其他疾病中的最新研究进展,并探讨了铁死亡在防治重大疾病中的前景,为防治重大疾病提供新的策略。
Ferroptosis is an iron-dependent cell death mode, characterized by the accumulation of lipid peroxides and the oxidation of polyunsaturated fatty acids (PUFAs) on the cell membrane by excessive Fe2 through the Fenton reaction, leading to ferroptosis. It has been reported that ferroptosis plays an important role in the prevention and treatment of major diseases, including tumors, cardiovascular diseases, liver diseases and so on. This review summarizes the latest research progress of ferroptosis in tumors, cardiovascular diseases, liver diseases and other diseases, and discusses the prospect of ferroptosis in the prevention and treatment of major diseases, so as to provide new strategies for the prevention and treatment of major diseases.
[1] | Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042 |
[2] | Zheng, J. and Conrad, M. (2020) The Metabolic Underpinnings of Ferroptosis. Cell Metabolism, 32, 920-937. https://doi.org/10.1016/j.cmet.2020.10.011 |
[3] | Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285. https://doi.org/10.1016/j.cell.2017.09.021 |
[4] | Yang, W.S., SriRamaratnam, R., Welsch, M.E., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 156, 317-331. https://doi.org/10.1016/j.cell.2013.12.010 |
[5] | Yang, W.S. and Stockwell, B.R. (2016) Ferroptosis: Death by Lipid Peroxidation. Trends in Cell Biology, 26, 165-176. https://doi.org/10.1016/j.tcb.2015.10.014 |
[6] | Xie, Y., Kang, R., Klionsky, D.J., et al. (2023) GPX4 in Cell Death, Autophagy, and Disease. Autophagy, 19, 2621-2638. https://doi.org/10.1080/15548627.2023.2218764 |
[7] | Kraft, V.A.N., Bezjian, C.T., Pfeiffer, S., et al. (2020) GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis Through Lipid Remodeling. ACS Central Science, 6, 41-53. https://doi.org/10.1021/acscentsci.9b01063 |
[8] | Doll, S., Freitas, F.P., Shah, R., et al. (2019) FSP1 Is a Glutathione-Independent Ferroptosis Suppressor. Nature, 575, 693-698. https://doi.org/10.1038/s41586-019-1707-0 |
[9] | Yang, M., Tsui, M.G., Tsang, J.K.W., et al. (2022) Involvement of FSP1-CoQ-NADH and GSH-GPx-4 Pathways in Retinal Pigment Epithelium Ferroptosis. Cell Death & Disease, 13, Article No. 468. https://doi.org/10.1038/s41419-022-04924-4 |
[10] | Bersuker, K., Hendricks, J.M., Li, Z., et al. (2019) The CoQ Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis. Nature, 575, 688-692. https://doi.org/10.1038/s41586-019-1705-2 |
[11] | Li, W., Liang, L., Liu, S., et al. (2023) FSP1: A Key Regulator of Ferroptosis. Trends in Molecular Medicine, 29, 753-764. https://doi.org/10.1016/j.molmed.2023.05.013 |
[12] | Doll, S., Proneth, B., Tyurina, Y.Y., et al. (2017) ACSL4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nature Chemical Biology, 13, 91-98. https://doi.org/10.1038/nchembio.2239 |
[13] | Bai, Y., Meng, L., Han, L., et al. (2019) Lipid Storage and Lipophagy Regulates Ferroptosis. Biochemical and Biophysical Research Communications, 508, 997-1003. https://doi.org/10.1016/j.bbrc.2018.12.039 |
[14] | Kagan, V.E., Mao, G., Qu, F., et al. (2017) Oxidized Arachidonic and Adrenic PEs Navigate Cells to Ferroptosis. Nature Chemical Biology, 13, 81-90. https://doi.org/10.1038/nchembio.2238 |
[15] | Wenzel, S.E., Tyurina, Y.Y., Zhao, J., et al. (2017) PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell, 171, 628-641.E26. https://doi.org/10.1016/j.cell.2017.09.044 |
[16] | Hangauer, M.J., Viswanathan, V.S., Ryan, M.J., et al. (2017) Drug-Tolerant Persister Cancer Cells Are Vulnerable to GPX4 Inhibition. Nature, 551, 247-250. https://doi.org/10.1038/nature24297 |
[17] | Hassannia, B., Vandenabeele, P., Vanden Berghe, T. et al. (2019) Targeting Ferroptosis to Iron out Cancer. Cancer Cell, 35, 830-849. https://doi.org/10.1016/j.ccell.2019.04.002 |
[18] | Hu, K., Li, K., Lv, J., et al. (2020) Suppression of the SLC7A11/Glutathione Axis Causes Synthetic Lethality in KRAS-Mutant Lung Adenocarcinoma. Journal of Clinical Investigation, 130, 1752-1766. https://doi.org/10.1172/JCI124049 |
[19] | Chen, X., Kang, R., Kroemer, G. and Tang. D. (2021) Broadening Horizons: The Role of Ferroptosis in Cancer. Nature Reviews Clinical Oncology, 18, 280-296. https://doi.org/10.1038/s41571-020-00462-0 |
[20] | Garwood, E.R., Kumar, A.S., Baehner, F.L., et al. (2010) Fluvastatin Reduces Proliferation and Increases Apoptosis in Women with High Grade Breast Cancer. Breast Cancer Research and Treatment, 119, 137-144. https://doi.org/10.1007/s10549-009-0507-x |
[21] | Gout, P.W., Buckley, A.R., Simms, C.R. and Bruchovsky, N. (2001) Sulfasalazine, A Potent Suppressor of Lymphoma Growth by Inhibition of the XC- Cystine Transporter: A New Action for an Old Drug. Leukemia, 15, 1633-1640. https://doi.org/10.1038/sj.leu.2402238 |
[22] | Graf, H., Jüngst, C., Straub, G., et al. (2008) Chemoembolization Combined with Pravastatin Improves Survival in Patients with Hepatocellular Carcinoma. Digestion, 78, 34-38. https://doi.org/10.1159/000156702 |
[23] | Hus, M., Grzasko, N., Szostek, M., et al. (2011) Thalidomide, Dexamethasone and Lovastatin with Autologous Stem Cell Transplantation as a Salvage Immunomodulatory Therapy in Patients with Relapsed and Refractory Multiple Myeloma. Annals of Hematology, 90, 1161-1166. https://doi.org/10.1007/s00277-011-1276-2 |
[24] | Li, J. and Zhou, B. (2010) Biological Actions of Artemisinin: Insights from Medicinal Chemistry Studies. Molecules, 15, 1378-1397. https://doi.org/10.3390/molecules15031378 |
[25] | Louandre, C., Ezzoukhry, Z., Godin, C., et al. (2013) Iron-Dependent Cell Death of Hepatocellular Carcinoma Cells Exposed to Sorafenib. International Journal of Cancer, 133, 1732-1742. https://doi.org/10.1002/ijc.28159 |
[26] | Stockwin, L.H., Han, B., Yu, S.X., et al. (2009) Artemisinin Dimer Anticancer Activity Correlates with Heme-Catalyzed Reactive Oxygen Species Generation and Endoplasmic Reticulum Stress Induction. International Journal of Cancer, 125, 1266-1275. https://doi.org/10.1002/ijc.24496 |
[27] | Zhang, Y., Tan, H., Daniels, J.D., et al. (2019) Imidazole Ketone Erastin Induces Ferroptosis and Slows Tumor Growth in a Mouse Lymphoma Model. Cell Chemical Biology, 26, 623-633.E9. https://doi.org/10.1016/j.chembiol.2019.01.008 |
[28] | Kim, S.E., Zhang, L., Ma, K., et al. (2016) Ultrasmall Nanoparticles Induce Ferroptosis in Nutrient-Deprived Cancer Cells and Suppress Tumour Growth. Nature Nanotechnology, 11, 977-985. https://doi.org/10.1038/nnano.2016.164 |
[29] | Bjarnadottir, O., Romero, Q., Bendahl, P.O., et al. (2013) Targeting HMG-CoA Reductase with Statins in a Window-of-Opportunity Breast Cancer Trial. Breast Cancer Research and Treatment, 138, 499-508. https://doi.org/10.1007/s10549-013-2473-6 |
[30] | Yang, Y., Sun, B., Zuo, S., et al. (2020) Trisulfide Bond-Mediated Doxorubicin Dimeric Prodrug Nanoassemblies with High Drug Loading, High Self-Assembly Stability, and High Tumor Selectivity. Science Advances, 6, eabc1725. https://doi.org/10.1126/sciadv.abc1725 |
[31] | Yang, Y.X., Zuo, S., Zhang, J.X., et al. (2022) Prodrug Nanoassemblies Bridged by Mono-/Di-/Tri-Sulfide Bonds: Exploration Is for Going Further. Nano Today, 44, Article ID: 101480. https://doi.org/10.1016/j.nantod.2022.101480 |
[32] | Chen, G., Yang, Y., Xu, Q., et al. (2020) Self-Amplification of Tumor Oxidative Stress with Degradable Metallic Complexes for Synergistic Cascade Tumor Therapy. Nano Letters, 20, 8141-8150. https://doi.org/10.1021/acs.nanolett.0c03127 |
[33] | Zhou, L. and Dong, C. (2021) Targeting Ferroptosis Synergistically Sensitizes Apoptotic Sonodynamic Anti-Tumor Nanotherapy. Nano Today, 39, Article ID: 101212. https://doi.org/10.1016/j.nantod.2021.101212 |
[34] | Chen, Q., Ma, X., Xie, L., et al. (2021) Iron-Based Nanoparticles for MR Imaging-Guided Ferroptosis in Combination with Photodynamic Therapy to Enhance Cancer Treatment. Nanoscale, 13, 4855-4870. https://doi.org/10.1039/D0NR08757B |
[35] | Zhao, Y., Li, M., Yao, X., et al. (2020) HCAR1/MCT1 Regulates Tumor Ferroptosis through the Lactate-Mediated AMPK-SCD1 Activity and Its Therapeutic Implications. Cell Reports, 33, Article ID: 108487. https://doi.org/10.1016/j.celrep.2020.108487 |
[36] | Chen, J., Li, X., Ge, C., Min, J. and Wang, F. (2022) The Multifaceted Role of Ferroptosis in Liver Disease. Cell Death & Differentiation, 29, 467-480. https://doi.org/10.1038/s41418-022-00941-0 |
[37] | Wang, H., An, P., Xie, E., et al. (2017) Characterization of Ferroptosis in Murine Models of Hemochromatosis. Hepatology, 66, 449-465. https://doi.org/10.1002/hep.29117 |
[38] | Fang, X., Zhang, J., Li, Y., et al. (2023) Malic Enzyme 1 as a Novel Anti-Ferroptotic Regulator in Hepatic Ischemia/Reperfusion Injury. Advanced Science, 10, e2205436. https://doi.org/10.1002/advs.202205436 |
[39] | Meng, H., Yu, Y., Xie, E., et al. (2023) Hepatic HDAC3 Regulates Systemic Iron Homeostasis and Ferroptosis via the Hippo Signaling Pathway. Research, 6, Article 0281. https://doi.org/10.34133/research.0281 |
[40] | Guo, J., Duan, L., He, X., et al. (2021) A Combined Model of Human IPSC-Derived Liver Organoids and Hepatocytes Reveals Ferroptosis in DGUOK Mutant MtDNA Depletion Syndrome. Advanced Science, 8, Article ID: 2004680. https://doi.org/10.1002/advs.202004680 |
[41] | Wu, Y., Jiao, H., Yue, Y., et al. 2022) Ubiquitin Ligase E3 HUWE1/MULE Targets Transferrin Receptor for Degradation and Suppresses Ferroptosis in Acute Liver Injury. Cell Death & Differentiation, 29, 1705-1718. |
[42] | Fang, X., Wang, H., Han, D., et al. (2022) Ferroptosis as a Target for Protection against Cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 116, 2672-2680. https://doi.org/10.1073/pnas.1821022116 |
[43] | Ta, N., Qu, C., Wu, H., et al. (2022) Mitochondrial Outer Membrane Protein FUNDC2 Promotes Ferroptosis and Contributes to Doxorubicin-Induced Cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, 119, e2117396119. https://doi.org/10.1073/pnas.2117396119 |
[44] | Gao, M., Monian, P., Quadri, N., et al. (2015) Glutaminolysis and Transferrin Regulate Ferroptosis. Molecular Cell, 59, 298-308. https://doi.org/10.1016/j.molcel.2015.06.011 |
[45] | Stamenkovic, A., Pierce, G.N. and Ravandi, A. (2019) Phospholipid Oxidation Products in Ferroptotic Myocardial Cell Death. American Journal of Physiology-Heart and Circulatory Physiology, 317, H156-H163. https://doi.org/10.1152/ajpheart.00076.2019 |
[46] | Menon, A.V., Liu, J., Tsai, H.P., et al. (2022) Excess Heme Upregulates Heme Oxygenase 1 and Promotes Cardiac Ferroptosis in Mice with Sickle Cell Disease. Blood, 139, 936-941. https://doi.org/10.1182/blood.2020008455 |
[47] | Li, J., Pan, X., Pan, G., et al. (2020) Transferrin Receptor 1 Regulates Thermogenic Capacity and Cell Fate in Brown/ Beige Adipocytes. Advanced Science, 7, Article ID: 1903366. https://doi.org/10.1002/advs.202070066 |
[48] | Yang, L., Wang, H., Yang, X., et al. (2020) Auranofin Mitigates Systemic Iron Overload and Induces Ferroptosis via Distinct Mechanisms. Signal Transduction and Targeted Therapy, 5, Article No. 138. https://doi.org/10.1038/s41392-020-00253-0 |
[49] | Von M?ssenhausen, A., Zamora Gonzalez, N., Maremonti, F., et al. (2022) Dexamethasone Sensitizes to Ferroptosis by Glucocorticoid Receptor-Induced Dipeptidase-1 Expression and Glutathione Depletion. Science Advances, 8, eabl8920. https://doi.org/10.1126/sciadv.abl8920 |
[50] | Rui, T., Wang, H., Li, Q., et al. (2021) Deletion of Ferritin H in Neurons Counteracts the Protective Effect of Melatonin against Traumatic Brain Injury-Induced Ferroptosis. Journal of Pineal Research, 70, e12704. https://doi.org/10.1111/jpi.12704 |
[51] | Hu, Q., Zhang, Y., Lou, H., et al. (2021) GPX4 and Vitamin E Cooperatively Protect Hematopoietic Stem and Progenitor Cells from Lipid Peroxidation and Ferroptosis. Cell Death & Disease, 12, Article No. 706. https://doi.org/10.1038/s41419-021-04008-9 |
[52] | Tu, L.F., Zhang, T.Z., Zhou, Y.F., et al. (2023) GPX4 Deficiency-Dependent Phospholipid Peroxidation Drives Motor Deficits of ALS. Journal of Advanced Research, 43, 205-218. https://doi.org/10.1016/j.jare.2022.02.016 |