全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Gravity-Driven Listric Growth Fault and Sedimentation in the Lagoa do Peixe, Rio Grande do Sul Coastal Plain, Brazil

DOI: 10.4236/ojg.2024.144025, PP. 594-616

Keywords: GPR (Ground-Penetrating Radar), Growth Fault, Sedimentation, Radarfacies, Coastal Plain

Full-Text   Cite this paper   Add to My Lib

Abstract:

High frequency, high resolution GPR surveys are successfully applied to investigate near-surface stratification architecture of sedimentary units in coastal plains and to define their depositional conditions. However, low frequency GPR surveys to investigate fault-related depositional systems at greater depths are scarce. This survey was designed investigate a > 100 km long linear escarpment that controls the northwest margin of the Lagoa do Peixe, an important lagoon in Rio Grande do Sul Coastal Plain (RGSCP, Brazil). The traditional approach points that RGSCP was developed by juxtaposition of four lagoons/barrier systems as consequence of sea level changes; no deformational structure is admitted to exist before. The low frequency GPR (50 MHz, RTA antenna) and geological surveys carried out in the RGSCP showed the existence of a large, gravity-driven listric growth fault controlling the Lagoa do Peixe escarpment and hangingwall sedimentation. The radargrams in four subareas along the Lagoa do Peixe Growth Fault could be interpreted following the seismic expression of rift-related depositional systems. The radargrams enabled to distinguish three main lagoonal deposition radarfacies. The lower lagoonal radarfacies is a convex upward unit, thicker close to growth fault; the radarfacies geometry indicates that fault displacement rate surpasses the sedimentation rate, and its upper stratum is aged ~3500 l4C years BP. The second lagoonal radarfacies is a triangular wedge restricted to the lagoon depocenter, whose geometry indicates that fault displacement and the sedimentation rates kept pace. The upper lagoonal radarfacies is being deposited since 1060 ± 70 l4C years BP, under sedimentation rate higher than fault displacement rate. The results indicate that low frequency GPR surveys can help in investigating fault-related depositional systems in coastal zones. They also point to a new approach in dealing with RGSCP stratigraphy.

References

[1]  Villwock, J.A., Tomazelli, L.J., Loss, E.L., Dehnhardt, E.A., Horn Filho, N.O., Bachi, F.A. and Dehnhardt, B.A. (1986) Geology of the Rio Grande do Sul Coastal Province. In: Rabassa, J., Ed., Quaternary of South America and Antarctic Peninsula, CRC Press, London, 79-97.
https://doi.org/10.1201/9781003079316-5
[2]  Rosa, M.L.C.C., Barboza, E.G., Abreu, V.S., Tomazelli, L.J. and Dillenburg, S.R. (2017) High-Frequency Sequences in the Quaternary of Pelotas Basin (Coastal Plain): A Record of Degradational Stacking as a Function of Longer-Term Base-Level Fall. Brazilian Journal of Geology, 47, 183-207.
https://doi.org/10.1590/2317-4889201720160138
[3]  Tomazelli, L.J. and Villwock, J.A. (1996) Quaternary Geological Evolution of Rio Grande do Sul Coastal Plain, Southern Brazil. Anais da Academia Brasileira Ciências, 68, 373-382.
[4]  Tomazelli, L.J., Dillenburg, S.R. and Villwock, J.A. (2000) Late Quaternary Geological History of Rio Grande do Sul Coastal Plain, Southern Brazil. Revista Brasileira de Geociências, 30, 470-472.
https://doi.org/10.25249/0375-7536.2000303474476
[5]  Villwock, J.A. (1972) Contribuição à Geologia do Holoceno da Província Costeira do Rio Grande do Sul. Master’s Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre.
[6]  Fonseca, V.P. (2006) Estudos morfotectônicos aplicados à planície costeira do Rio Grande do Sul e adjacências. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre.
[7]  Strieder, A.J., Fontoura, B.S., Behling, J.S., Wetzel, R.S., Duarte, R.S.S., Silva, T.C., Mendes, P.R., Nobrega, A.A.V., Niencheski, L.F.H. and Calliari, L.J. (2015) Gravitational Tectonics Evidences at RGS (Brazil) Coastal Plain Using Ground Penetrating Radar. 2015 8th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Florence, 7-10 July 2015, 1-4.
https://doi.org/10.1109/IWAGPR.2015.7292667
[8]  Cooper, J.A.G., Green, A.N., Meireles, R.P., Klein, A.H.F., Souza, J. and Toldo, E.E. (2016) Sandy Barrier Overstepping and Preservation Linked to Rapid Sea Level Rise and Geological Setting. Marine Geology, 382, 80-91.
https://doi.org/10.1016/j.margeo.2016.10.003
[9]  Cooper, J.A.G., Meireles, R.P., Green, A.N., Klein, A.H.F. and Toldo, E.E. (2018) Late Quaternary Stratigraphic Evolution of the Inner Continental Shelf in Response to Sea-Level Change, Santa Catarina, Brazil. Marine Geology, 397, 1-14.
https://doi.org/10.1016/j.margeo.2017.11.011
[10]  Da Fontoura, B.S., Strieder, A.J., Corrêa, I.C.S., Mendes, P.R., Bruch, A.F. and Cirolini, A. (2024) Gravity Fault Subsidence and Beach Ridges Progradation in Quinta-Cassino (RS) Coastal Plain, Brazil. Open Journal of Geology, 14, 177-195.
https://doi.org/10.4236/ojg.2024.142011
[11]  Dillenburg, S.R., Tomazelli, L.J. and Barboza, E.G. (2004) Barrier Evolution and Placer Formation at Bujuru Southern Brazil. Marine Geology, 203, 43-56.
https://doi.org/10.1016/S0025-3227(03)00330-X
[12]  Neal, A. (2004) Ground-Penetrating Radar and Its Use in Sedimentology: Principles, Problems and Progress. Earth-Science Reviews, 66, 261-330.
https://doi.org/10.1016/j.earscirev.2004.01.004
[13]  Reiss, S., Reicherter, K.R. and Reuther, C.D. (2003) Visualization and Characterization of Active Normal Faults and Associated Sediments by High Resolution GPR. In: Bristow, C.S. and Joe, H.M., Eds., Ground Penetrating Radar in Sediments, Vol. 211, Geological Society, London, 247-255.
https://doi.org/10.1144/GSL.SP.2001.211.01.20
[14]  Christie, M., Tsoflias, G.P., Stockli, D.F. and Black, R. (2009) Assessing Fault Displacement and Off-Fault Deformation in an Extensional Tectonic Setting Using 3-D Ground-Penetrating Radar Imaging. Journal of Applied Geophysics, 68, 9-16,
https://doi.org/10.1016/j.jappgeo.2008.10.013
[15]  Nobes, D.C., Jol, H.M. and Duffy, B. (2016) Geophysical Imaging of Disrupted Coastal Dune Stratigraphy and Possible Mechanisms, Haast, South Westland, New Zealand. New Zealand Journal of Geology and Geophysics, 59, 426-435.
https://doi.org/10.1080/00288306.2016.1168455
[16]  Zhang, C., Wang, H., Liao, Y., Lu, Z. and Tang, J. (2016) Differential Control of Syndepositional Faults on Sequence Stratigraphy and Depositional Systems during Main Rift I Stage in the Southeastern Fault Zone of Qingxi Sag, Jiuquan Basin, Northwestern China. Journal of Petroleum Exploration and Production Technology, 6, 145-157.
https://doi.org/10.1007/s13202-015-0190-x
[17]  Neal, A. and Roberts, C.L. (2001) Internal Structure of a Trough Blowout, Determined from Migrated Ground-Penetrating Radar Profiles. Sedimentology, 48, 791-810.
https://doi.org/10.1046/j.1365-3091.2001.00382.x
[18]  Chapman, R.E. (1983) Early Deformation of Sedimentary Basins Growth Structures. In: Chapmann, R.E., Ed., Developments in Petroleum Science Series, Vol. 16, Elsevier, Amsterdam, 23-40.
https://doi.org/10.1016/s0376-7361(08)70086-4
[19]  Prosser, S. (1993) Rift-Related Linked Depositional Systems and Their Seismic Expression. In: Williams, G.D. and Dobb, A., Eds., Tectonics and Seismic Sequence Stratigraphy, Vol. 71, Geological Society, London, 35-66.
https://doi.org/10.1144/GSL.SP.1993.071.01.03
[20]  Castillo, L.L.A., Kazmierczak, T.S. and Chemale Junior, F. (2009) Rio Grande Cone Tectono-Stratigraphic Model-Brazil: Seismic Sequences. Earth Sciences Research Journal, 13, 42-53.
[21]  Santos, A.C.O. (2020) Tectônica Gravitacional no Cone do Rio Grande, Bacia de Pelotas (RS). Ph.D. Thesis, Universidade Federal do Rio Grande, Rio Grande.
[22]  Bauermann, S.G. (2003) Análises palinológicas e evolução paleovegetacional e paleoambiental das turfeiras de Barrocadas e Águas Claras, Planície Costeira do Rio Grande do Sul, Brasil. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre.
[23]  Weschenfelder, J., Medeanic, S., Corrêa, I.C.S. and Aliotta, S. (2008) Holocene Paleoinlet of the Bojuru Region, Lagoa dos Patos, Southern Brazil. Journal of Coastal Research, 24, 99-109.
https://doi.org/10.2112/04-0369.1
[24]  Medeanic, S., Dillenburg, S.R. and Toldo Junior, E.E. (2001) Novos dados palinológicos da transgressão marinha pós-glacial emsedimentos da Laguna dos Patos. Revista Universidade Guarulhos, Geociências, 6, 64-76.
[25]  Lundin, E.R. (1992) Thin-Skinned Extensional Tectonics on a Salt Detachment, Northern Kwanza Basin, Angola. Marine and Petroleum Geology, 9, 405-411.
https://doi.org/10.1016/0264-8172(92)90051-F
[26]  Brun, J.-P. and Fort, X. (2011) Salt Tectonics at Passive Margins: Geology versus Models. Marine and Petroleum Geology, 28, 1123-1145.
https://doi.org/10.1016/j.marpetgeo.2011.03.004
[27]  Fernandez, B.M., Mohriak, W.U. and Menezes, P.T.L. (2003) Structural and Stratigraphic Aspects of Salt Tectonics in the Eastern Brazilian Margin: Evolution Model and Seismic Section Restoration. 8th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, 14-18 September 2003, 6 p.
[28]  Garcia, S.F.M., Letouzey, J., Rudkiewicz, J.-L., Danderfer Filho, A. and Lamotte, D.F. (2012) Structural Modeling Based on Sequential Restoration of Gravitational Salt Deformation in the Santos Basin (Brazil). Marine and Petroleum Geology, 35, 337-353.
https://doi.org/10.1016/j.marpetgeo.2012.02.009
[29]  Souza, J.M.G., Cubas, N., Rabe, C., Letouzey, J., Divies, R., Praeg, D.B., Granjeon, D., Cruz, A.M., Guizan Silva, C.G., Reis, A.T. and Gorini, C. (2020) Controls on Overpressure Evolution during the Gravitational Collapse of the Amazon Deep-Sea Fan. Marine and Petroleum Geology, 121, Article 104576.
https://doi.org/10.1016/j.marpetgeo.2020.104576

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133