全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Design  2024 

基于深度学习的景观感知评价研究现状及趋势分析
Research Status and Trend Analysis of Landscape Perception Evaluation Based on Deep Learning

DOI: 10.12677/design.2024.92238, PP. 503-509

Keywords: 深度学习,机器学习,人工智能,景观格局,景观评价,景观感知
Deep Learning
, Machine Learning, Artificial Intelligence, Landscape Pattern, Landscape Evaluation, Landscape Perception

Full-Text   Cite this paper   Add to My Lib

Abstract:

深度学习技术已在风景园林领域证明了其重要价值,尤其是在景观感知评价和数字化规划设计中显示出广泛的研究和应用前景。该技术能够通过多层次、多阶段的表示学习从大规模数据集中提取复杂特征,有助于构建先进的景观评价和分析模型,从而大幅提升模型性能和适用性。然而,并行的是,技术与实践的发展将可能带来新的挑战,需要研究者和从业者保持对新发展方向的关注和适应。
Deep learning technology has demonstrated its significant value in the field of landscape architecture, particularly in terms of landscape perception evaluation and digital planning and design, showing a broad range of research and application prospects. The technology is capable of extracting complex features from large-scale datasets through multi-level, multi-stage representation learning, which aids in constructing advanced landscape evaluation and analysis models, thereby greatly enhancing model performance and applicability. However, parallel to this progress, the development of technology and practice may bring new challenges, necessitating that researchers and practitioners maintain their focus on and adapt to emerging directions of development.

References

[1]  王柏衡, 赵潇洋. 深度学习技术在EMG机械手臂的手势控制系统设计中的应用[J]. 工业设计, 2020(8): 28-29.
[2]  苏佳媛. 基于深度学习技术的智能化无人机视觉系统设计研究[J]. 工业设计, 2020(12): 152-153.
[3]  周建, 刘炎宝, 刘佳佳. 情感分析研究的知识结构及热点前沿探析[J]. 情报学报, 2020, 39(1): 111-124.
[4]  Kim, Y. (2014) Convolutional Neural Networks for Sentence Classification. Empirical Methods in Natural Language Processing, Doha, October 2014, 1746-1751.
https://doi.org/10.3115/v1/D14-1181
[5]  Kalchbrenner, N., Grefenstette, E. and Blunsom, P. (2014) A Convolutional Neural Network for Modelling Sentences. Annual Meeting of the Association for Computational Linguistics, Baltimore, June 2014, 655-665.
https://doi.org/10.3115/v1/P14-1062
[6]  Hochreiter, S. and Schmidhuber, J. (1997) Long Short-Term Memory. Neural Computation, 9, 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735
[7]  Tai, K.S., Socher, R. and Manning, C.D. (2015) Improved Semantic Representations from Tree-Structured Long Short-Term Memory Networks. arXiv: 1503.00075.
[8]  Wang, Y.Q., Huang, M.L., Zhao, L., et al. (2016) Attention-Based LSTM for Aspect-Level Sentiment Classification. Conference on Empirical Methods in Natural Language Processing, Austin, November 2016, 606-615.
https://doi.org/10.18653/v1/D16-1058
[9]  Tang, D.Y., Qin, B. and Liu, T. (2016) Aspect Level Sentiment Classification with Deep Memory Network. Conference on Empirical Methods in Natural Language Processing, Austin, November 2016, 214-224.
https://doi.org/10.18653/v1/D16-1021
[10]  Cho, K., Van Merrienboer, B., Gulcehre, C., et al. (2014) Learning Phrase Representationsusing RNN Encoder-Decoder for Statistical Machine Translation. arXiv: 1406.1078.
[11]  Xue, W. and Li, T. (2018) Aspect Based Sentiment Analysis with Gated Convolutional Networks. Annual Meeting of the Association for Computational Linguistics, Melbourne, July 2018, 2514-2523.
https://doi.org/10.18653/v1/P18-1234
[12]  Bahdanau, D., Cho, K. and Bengio, Y. (2014) Neural Machine Translation by Jointly Learning to Align and Translate. arXiv: 1409.0473.
[13]  Yang, M., Tu, W.T. and Wang, J.X. (2017) Attention-Based LSTM for Target Dependent Sentiment Classification. Thirty-First AAAl Conference on Artificial Intelligence, 31, 5013-5014.
https://doi.org/10.1609/aaai.v31i1.11061
[14]  Cliché, M. (2017) BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs. arXiv: 1704.06125.
https://doi.org/10.18653/v1/S17-2094
[15]  Hassan, A. and Mahmood, A. (2017) Deep Learning Approach for Sentiment Analysis of Short Exts. 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), Nagoya, 24-26 April 2017, 705-710.
https://doi.org/10.1109/ICCAR.2017.7942788
[16]  张浩, 李海鹏. 多层次特征融合表征的图像情感识别[J]. 计算机辅助设计与图形学学报, 2023, 35(10): 1566-1576.
[17]  You, Q., Jin, H. and Luo, J. (2017) Visual Sentiment Analysis by Attending on Local Image Regions. Thirty-First AAAI Conference on Artificial Intelligence, 31, 231-237.
https://doi.org/10.1609/aaai.v31i1.10501
[18]  Song, K.S., Nho, Y.H., Seo, J.H., et al. (2018) Decision-Level Fusion Method for Emotion Recognition Using Multimodal Emotion Recognition Information. 2018 15th International Conference on Ubiquitous Robots (UR), Honolulu, 26-30 June 2018, 472-4761.
https://doi.org/10.1109/URAI.2018.8441795
[19]  Yang, J., She, D., Sun, M., et al. (2018) Visual Sentiment Prediction Based on Automatic Discovery of Affective Regions. IEEE Transactions on Multimedia, 20, 2513-2525.
https://doi.org/10.1109/TMM.2018.2803520
[20]  杨淼甜. 基于深度学习的城市旅游情感空间探测研究——以西安典型旅游街区为例[D]: [硕士学位论文]. 西安: 陕西师范大学, 2020.
[21]  张心月. 面向用户评论的方面级情感分析研究[D]: [硕士学位论文]. 武汉: 华中师范大学, 2023.
[22]  Dong, L., Wei, F., Tan, C., et al. (2014) Adaptive Recursive Neural Network for Target-Dependent Twitter Sentiment Classification. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, June 2014, 49-54.
https://doi.org/10.3115/v1/P14-2009
[23]  梁斌, 刘全, 徐进, 等. 基于多注意力卷积神经网络的特定方面情感分析[J]. 计算机研究与发展, 2017, 54(8): 1724.
[24]  Zhou, P., Shi, W., Tian, J., et al. (2016) Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, August 2016, 207-212.
https://doi.org/10.18653/v1/P16-2034
[25]  Luo, H., Li, T., Liu, B., et al. (2019) DOER: Dual Cross-Shared RNN for Aspect Term-Polarity Co-Extraction. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, July 2019, 591-601.
https://doi.org/10.18653/v1/P19-1056
[26]  Li, Q. and Ji, H. (2014) Incremental Joint Extraction of Entity Mentions and Relations. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, June 2014, 402-412.
https://doi.org/10.3115/v1/P14-1038
[27]  任涛. 基于多元方法的游客情感分类挖掘技术研究——以文本大数据为例[D]: [硕士学位论文]. 西安: 陕西师范大学, 2019.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133