|
由α-稳定过程驱动的线性自排斥扩散过程的渐近行为和参数估计
|
Abstract:
设为一维
-稳定模型且
。本文主要研究如下线性自排斥扩散的长时间行为和参数估计:
,其中
、
是两个未知参数且
。当
且t趋于无穷大时,对任意
,我们有
和
几乎处处成立,其中
。在连续观测条件下,建立
和
的最小二乘估计讨论其相合性与渐近分布。
Let be an
-stable motion of one-dimension with
. In this paper, we consider large time behaviors and parameter estimation of the linear self-repelling diffusion of the forms
where
and
are two unknown parameters. When
and t tends to infinity, we show that the convergence
and
hold almost surely for all
, where
. The least squares estimates of
and
are
[1] | Cranston, M. and Le Jan, Y. (1995) Self-Attracting Diffusion: Two Case Studies. Mathematische Annalen, 303, 87-93. https://doi.org/10.1007/BF01460980 |
[2] | Durrett, R. and Rogers, L.C.G. (1991) Asymptotic Behavior of Brownian Polymer. Probability Theory and Related Fields, 92, 337-349. https://doi.org/10.1007/BF01300560 |
[3] | Pemantle, R. (1988) Phase Transition in Reinforced Random Walk and RWWE on Trees. Annals of Probability, 16, 1229-1241. https://doi.org/10.1214/aop/1176991687 |
[4] | Bena?m, M., Ciotir, I. and Gauthier, C.-E. (2015) Self-Repelling Diffusions via an Infinite Dimensional Approach. Stochastic Partial Differential Equations: Analysis and Computations, 3, 506-530. https://doi.org/10.1007/s40072-015-0059-5 |
[5] | Cranston, M. and Mountford, T.S. (1996) The Strong Law of Large Numbers for a Brownian Polymer. Annals of Probability, 24, 1300-1323. https://doi.org/10.1214/aop/1065725183 |
[6] | Gauthier, C.-E. (2016) Self Attracting Diffusions on a Sphere and Application to a Periodic Case. Electronic Communications in Probability, 21, 1-12. https://doi.org/10.1214/16-ECP4547 |
[7] | Herrmann, S. and Scheutzow, M. (2004) Rate of Convergence of Some Self-Attracting Diffusions. Stochastic Processes and Their Applications, 111, 41-55. https://doi.org/10.1016/j.spa.2003.10.012 |
[8] | Mountford, T. and Tarrés, P. (2008) An Asymptotic Result for Brownian Polymers. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 44, 29-46. https://doi.org/10.1214/07-AIHP113 |
[9] | Sun X. and Yan, L. (2020) A Convergence on the Linear Self-Interacting Diffusion Driven by α-Stable Motion. Stochastics, 93, 1186-1208. https://doi.org/10.1080/17442508.2020.1869239 |
[10] | Rosinski, J. and Woyczynski, W.A. (1986) On It? Stochastic Integration with Respect to P-Stable Motion: Inner Clock, Integrability of Sample Paths, Double and Multiple Integrals. Annals of Probability, 14, 271-286. https://doi.org/10.1214/aop/1176992627 |