Living objects have complex internal and external interactions. The complexity is regulated and controlled by homeostasis, which is the balance of multiple opposing influences. The environmental effects finally guide the self-organized structure. The living systems are open, dynamic structures performing random, stationary, stochastic, self-organizing processes. The self-organizing procedure is defined by the spatial-temporal fractal structure, which is self-similar both in space and time. The system’s complexity appears in its energetics, which tries the most efficient use of the available energies; for that, it organizes various well-connected networks. The controller of environmental relations is the Darwinian selection on a long-time scale. The energetics optimize the healthy processes tuned to the highest efficacy and minimal loss (minimalization of the entropy production). The organism is built up by morphogenetic rules and develops various networks from the genetic level to the organism. The networks have intensive crosstalk and form a balance in the Nash equilibrium, which is the homeostatic state in healthy conditions. Homeostasis may be described as a Nash equilibrium, which ensures energy distribution in a “democratic” way regarding the functions of the parts in the complete system. Cancer radically changes the network system in the organism. Cancer is a network disease. Deviation from healthy networking appears at every level, from genetic (molecular) to cells, tissues, organs, and organisms. The strong proliferation of malignant tissue is the origin of most of the life-threatening processes. The weak side of cancer development is the change of complex information networking in the system, being vulnerable to immune attacks. Cancer cells are masters of adaptation and evade immune surveillance. This hiding process can be broken by electromagnetic nonionizing radiation, for which the malignant structure has no adaptation strategy. Our objective is to review the different sides of living complexity and use the knowledge to fight against cancer.
References
[1]
West, B.J. (2010) Fractal Physiology and the Fractional Calculus: A Perspective. Frontiers in Physiology, 1, Article No. 12. https://doi.org/10.3389/fphys.2010.00012
[2]
Hegyi, G., Vincze, Gy. and Szasz, A. (2012) On the Dynamic Equilibrium in Homeostasis. Open Journal of Biophysics,2, 64-71. https://doi.org/10.4236/ojbiphy.2012.23009
[3]
Szasz, O., Szigeti, G.P. and Szasz, A. (2019) The Intrinsic Self-Time of Biosystems. Open Journal of Biophysics, 9, 131-145.
[4]
Thimann, K.V. (1956) Promotion and Inhibition: Twin Themes of Physiology. American Naturalist, 90, 145-162. https://doi.org/10.1086/281921
[5]
West, B.J. (1990) Fractal Physiology and Chaos in Medicine. World Scientific, Singapore. https://doi.org/10.1142/1025
[6]
Cramer, F. (1995) Chaos and Order (The Complex Structure of Living Systems). VCH, Weinheim.
[7]
Goldberger, A.L. and West, B.J. (1987) Chaos in Physiology: Hearth or Disease? In: Degn, H., et al., Eds., Chaos in Biological Systems, Springer Science Business Media, New York, 1-4. https://doi.org/10.1007/978-1-4757-9631-5_1
[8]
Mandell, A.J., Knapp, S., Ehlers, C.L. and Russo, P.V. (1983) The Stability of Constrained Randomness: Lithium Prophylaxis at Several Neurobiological Levels. In: Post, R.M. and Ballenger, J.C., Eds., Neurobiology of the Mood Disorders, Williams & Wilkins, Baltimore, 744-776.
[9]
Grondin, Y., Raine, D.J. and Norris, V. (2012) Life at the “Edge of Chaos” in a Genetic Model. In: Minai, A.A., Braha, D. and Bar-Yam, Y., Eds., Unifying Themes in Complex Systems VII, Springer, Berlin, 124-131. https://doi.org/10.1007/978-3-642-18003-3_12
[10]
Hanel, R., Pöchacker, M. and Thurner, S., (2010) Living on the Edge of Chaos: Minimally Nonlinear Models of Genetic Regulatory Dynamics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,368, 5583-5596. https://doi.org/10.1098/rsta.2010.0267
[11]
Furusawa, C. and Kaneko, K. (2012) Adaptation to Optimal Cell Growth through Self-Organized Criticality. Physical Review Letters, 108, Article ID: 208103. https://doi.org/10.1103/PhysRevLett.108.208103
[12]
Du, X.X., Doubrovinski, K. and Osterfield, M. (2012) Self-Organized Cell Motility from Motor Filament Interactions. Biophysics Journal,102, 1738-1745. https://doi.org/10.1016/j.bpj.2012.03.052
[13]
Hanel, R., Poechacker, M., Schoelling, M. and Thurner, S. (2012) A Self-Organized Model for Cell-Differentiation Based on Variations of Molecular Decay Rates. PLOS ONE,7, e36679. https://doi.org/10.1371/journal.pone.0036679
[14]
Wierman, M.J. (2010) An Introduction to Mathematics of Uncertainty, Hoors Program. Creighton University, College of Arts and Sciences, Omaha. https://www.creighton.edu/sites/default/files/2022-03/MOU.pdf
[15]
Modell, H., Cliff, W., Michael, J., et al. (2015) A Physiologist’s View of Homeostasis. Advances in Physiology Education, 39, 259-266. https://doi.org/10.1152/advan.00107.2015
[16]
Anteneodo, C. and Da Luz, M.G.E. (2010) Complex Dynamics of Life at Different Scales: From Genomic to Global Environmental Issues. Philosophical Transactions on the Royal Society A, 368, 5561-5568. https://doi.org/10.1098/rsta.2010.0286
[17]
Eskov, V.M., Filatova, O.E., Eskov, V.V., et al. (2017) The Evolution of the Idea of Homeostasis: Determinism, Stochastics, and Chaos-Self-Organization. Biophysics, 62, 809-820. https://doi.org/10.1134/S0006350917050074
[18]
Mode, C.J., Durrett, R., Klebaner, F., et al. (2013) Applications of Stochastic Processes in Biology and Medicine. International Journal of Stochastic Analysis,2013, Article ID: 790625. https://doi.org/10.1155/2013/790625
[19]
Wu, M. and Higgs, P.G. (2012) The Origin of Life Is a Spatially Localized Stochastic Transition. Biology Direct, 7, Article No. 42. https://doi.org/10.1186/1745-6150-7-42
[20]
Wolf, Y.I., Katsnelson, M.I. and Koonin, E.V. (2018) Physical Foundations of Biological Complexity. Proceedings of the National Academy of Sciences, 115, E8678-E8687. https://doi.org/10.1073/pnas.1807890115
[21]
Szasz, O. and Szasz, A. (2021) Approaching Complexity: Hyperthermia Dose and Its Possible Measurement in Oncology. Open Journal of Biophysics, 11, 68-132. https://doi.org/10.4236/ojbiphy.2021.111002
[22]
West, B.J. (2006) Where Medicine Went Wrong. Rediscovering the Path to Complexity. World Scientific, Singapore. https://doi.org/10.1142/9789812773098
[23]
Billman, G.E. (2020) Homeostasis: The Underappreciated and Far Too Often Ignored Central Organizing Principle of Physiology. Frontiers in Physiology, 11, Article No. 200. https://doi.org/10.3389/fphys.2020.00200
[24]
Theise, N.D. and Kafatos, M.C. (2013) Complementarity in Biological Systems—A Complexity View. Complexity, 18, 11-20. https://doi.org/10.1002/cplx.21453
[25]
Mohr, H. (1977) Structure and Significance of Science. Springer, New York, 102. https://doi.org/10.1007/978-3-642-45496-7
[26]
Brandas, E.J. (2010) Godelian Structures and Self-Organization in Biological Systems. International Journal of Quantum Chemistry, 111, 1321-1332. https://doi.org/10.1002/qua.22616
[27]
Godel, K. (1931) Uber Formal Unentscheidbare Satze Der Principia Mathematica Und Verwandter Systeme, I. Monatshefte Fur Mathematik Und Physik, 38, 173-198. https://doi.org/10.1007/BF01700692
[28]
Seel, M. and Ladik, J. (2019) The Tragicomedy of Modern Theoretical Biology. In: Advances in Quantum Chemistry, Elsevier, Amsterdam, 1-13. https://doi.org/10.1016/bs.aiq.2019.11.001
Kurakin, A. (2011) The Self-Organizing Fractal Theory as a Universal Discovery Method: The Phenomenon of Life. Theoretical Biology and Medical Modelling, 8, Article No. 4. https://doi.org/10.1186/1742-4682-8-4
[31]
Schlesinger, M.S. (1987) Fractal Time and 1/F Noise in Complex Systems. Annals of the New York Academy of Sciences, 504, 214-228. https://doi.org/10.1111/j.1749-6632.1987.tb48734.x
[32]
Bonner, J.T. (1959) The Cellular Slime Molds (Investigations in the Biological Sciences). Princeton University Press, Princeton.
[33]
Bonner, J.T. (1967) The Cellular Slime Molds. 2nd Edition, Princeton University Press, Princeton. https://doi.org/10.1515/9781400876884
[34]
Bonner, J.T. (2001) First Signals: The Evolution of Multicellular Development. Princeton University Press, Princeton. https://doi.org/10.1515/9781400830589
[35]
Bonner, J.T. (2006) Why Size Matters: From Bacteria to Blue Whales. Princeton University Press, Princeton. https://doi.org/10.1515/9781400837557
[36]
Weld, D.S., Lin, C.H. and Bragg, J. (2014) Artificital Intelligence and Collective Intelligence. https://homes.cs.washington.edu/~weld/papers/ci-chapter2014.pdf
[37]
Waters, J.S., Ochs, A., Fewell, J.H. and Harrison, J.F. (2017) Differentiating Causality and Correlation in Allometric Scaling: Ant Colony Size Drives Metabolic Hypometry. Proceedings of the Royal Society B, 284, Article ID: 20162582. https://doi.org/10.1098/rspb.2016.2582
[38]
Waters, J.S., Holbrook, C.T., Fewell, J.H. and Harrison, J.F. (2010) Allometric Scaling of Metabolism, Growth, and Activity in Whole Colonies of the Seed-Harvester Ant. The American Naturalist,176, 501-510. https://doi.org/10.1086/656266
[39]
Kauffman, S.A. (1993) The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, New York. https://doi.org/10.1093/oso/9780195079517.001.0001
[40]
Coffey, D.S. (1998) Self-Organization, Complexity and Chaos: The New Biology for Medicine. Nature Medicine, 4, 882-885. https://doi.org/10.1038/nm0898-882
[41]
Di Ieva, A., Bruner, E., Widhalm, G., Minchev, G., Tschabitscher, M. and Grizzi, F. (2012) Computer-Assisted and Fractal-Based Morphometric Assessment of Microvascularity in Histological Specimens of Gliomas. Scientific Reports, 2, Article No. 429. https://doi.org/10.1038/srep00429
[42]
Lee, S-Y., Szigeti, G.P. and Szasz, A.M. (2019) Oncological Hyperthermia: The Correct Dosing in Clinical Applications. International Journal of Oncology, 54, 627-643. https://doi.org/10.3892/ijo.2018.4645
[43]
Jacques, S.L. (2006) Ratio of Entropy to Enthalpy in Thermal Transitions in Biological Tissues. Journal of Biomedical Optics, 11, Article ID: 041108. https://doi.org/10.1117/1.2343437
[44]
Prigogine, I. (1947) Etude Thermodynamique des Processus Irreversibles. Thesis, Dunod et Desoer, Paris.
[45]
Prigogine, I. (1954) Thermodynamics of Irreversible Processes. John Wiley & Sons, Hoboken.
[46]
De Groot, S.R. (1951) Thermodynamics of Irreversible Processes. North-Holland Publ. Co., Amsterdam.
[47]
Glansdorff, P. and Prigogine, I. (1954) Sur Les Sur Les Propriétés Différentielles de la Production D’Entropie. Physica, 20, 773-780. https://doi.org/10.1016/S0031-8914(54)80190-X
[48]
Glansdorff, P. and Prigogine, I. (1971) Thermodynamic Theory of Structure, Stability and Fluctuations. John Wiley & Sons, London, New York.
[49]
West, G.B., Woodruf, W.H. and Born, J.H. (2002) Allometric Scaling of Metabolic Rate from Molecules and Mitochondria to Cells and Mammals. Proceedings of the National Academy of Sciences of the United States of America,99, 2473-2478. https://doi.org/10.1073/pnas.012579799
[50]
Lehmann, L., Alger, I. and Weibull, J. (2015) Does Evolution Lead to Maximizing Behavior? Evolution. 69, 1858-1873. https://doi.org/10.1111/evo.12701
[51]
Damuth, J. (2001) Scaling of Growth: Plants and Animals Are Not So Different. Proceedings of the National Academy of Sciences of the United States of America,98, 2113-2114. https://doi.org/10.1073/pnas.051011198
[52]
Glazier, D.S. (2014) Metabolic Scaling in Complex Living Systems. Systems, 2, 451-540. https://doi.org/10.3390/systems2040451
[53]
Gayon, J. (2000) History of the Concept of Allometry. American Zoologist, 40, 748-758. https://doi.org/10.1093/icb/40.5.748
West, G.B., Brown, J.H. and Enquist, B.J. (1999) The Fourth Dimension of Life: Fractal Geometry and Allometric Scaling of Organisms. Science,284, 1677-1679. https://doi.org/10.1126/science.284.5420.1677
[56]
Scheffer, M. and Van Nes, E.H. (2006) Self-Organized Similarity, the Evolutionary Emergence of Groups of Similar Species. Proceedings of the National Academy of Sciences, 103, 6230-6235. https://doi.org/10.1073/pnas.0508024103
[57]
Peto, R., Roe, F.J.C; Lee, P.N., Levy, L. and Clack, J. (1975) Cancer and Aging in Mice and Men. British Journal of Cancer, 32, 411-426. https://doi.org/10.1038/bjc.1975.242
[58]
Huxley, J.S. and Teissier, G. (1936) Terminology of Relative Growth. Nature, 137, 780-781. https://doi.org/10.1038/137780b0
[59]
Szasz, O., Szigeti, Gy.P. and Szasz, A. (2017) On the Self-Similarity in Biologyical Processes. Open Journal of Biophysics, 7, 183-196. https://doi.org/10.4236/ojbiphy.2017.74014
[60]
Szasz, O. and Szasz, A. (2020) Parametrization of Survival Measures, Part I: Consequences of Self-Organizing. International Journal of Clinical Medicine, 11, 316-347. https://doi.org/10.4236/ijcm.2020.115031
[61]
Weibel, E.R. (2015) Chapter 22. How Benoit Mandelbrot Changed My Thinking about Biological Form. In: Mandelbrot, B., Ed., Fractals and Dynamics in Mathematics, Science, and the Arts: Theory and Applications, World Scientific Publishing, Singapore, 471-487. https://doi.org/10.1142/9789814366076_0022
[62]
Calder, III W.A. (1984) Size, Function and Life History. Dover Publications Inc., Mineola.
[63]
Labra, F.A., Marquet, P.A. and Bozinovic, F. (2007) Scaling Metabolic Rate Fluctuations. Proceedings of the National Academy of Sciences, 104, 10900-10903. https://doi.org/10.1073/pnas.0704108104
[64]
Huxley, J.S. (1932) Problems of Relative Growth. Lincoln Mac Veagh—The Dial Press, New York.
[65]
Wang, Y., Wang, X., Wohland, T. and Sampath, K. (2016) Extracellular Interactions and Ligand Degradation Shape the Nodal Morphogen Gradient. ELife, 5, e13879. https://doi.org/10.7554/eLife.13879
[66]
Potoyan, D.A. and Wolynes, P.G. (2014) On the Dephasing of Genetic Oscillators. Proceedings of the National Academy of Sciences, 111, 2391-2396. https://doi.org/10.1073/pnas.1323433111
[67]
Ptitsyn, A.A., Zvonic, S. and Gimble, J.M. (2007) Digital Signal Processing Reveals Circadian Baseline Oscillation in Majority of Mammalian Genes. PLoS Computational Biology,3, e120. https://doi.org/10.1371/journal.pcbi.0030120
[68]
Szendro, P., Vincze, G. and Szasz, A. (2001) Pink Noise Behaviour of the Bio-Systems. European Biophysics Journal,30, 227-231. https://doi.org/10.1007/s002490100143
[69]
Wentian, L. (1989) Spatial 1/F Spectra in Open Dynamical Systems. Europhysics Letters,10, 395-400. https://doi.org/10.1209/0295-5075/10/5/001
[70]
Deering, W. and West, B.J. (1992) Fractal Physiology. IEEE Engineering in Medicine and Biology,11, 40-46. https://doi.org/10.1109/51.139035
[71]
Bassingthwaighte, J.B., Leibovitch, L.S. and West, B.J. (1994) Fractal Physiology. Oxford Univ. Press, New York. https://doi.org/10.1007/978-1-4614-7572-9
[72]
Szasz, A. (2022) Time-Fractal in Living Objects. Open Journal of Biophysics, 12, 1-26. https://doi.org/10.4236/ojbiphy.2022.121001
[73]
Szasz, A. (2022) Stimulation and Control of Homeostasis. Open Journal of Biophysics,12, 89-131. https://doi.org/10.4236/ojbiphy.2022.122004
[74]
Szasz, A. (2022) Cancer Specific Resonances. Open Journal of Biophysics, 12, 185-222. https://doi.org/10.4236/ojbiphy.2022.124009
[75]
Szasz, A. (2021) Therapeutic Basis of Electromagnetic Resonances and Signal-Modulation. Open Journal of Biophysics, 11, 314-350. https://doi.org/10.4236/ojbiphy.2021.113011
[76]
Mukherjee, S. (2022) The Song of the Cell: An Exploration of Medicine and the New Human. Scribner, New York.
[77]
Sottoriva, A. and Graham, T.A. (2015) A Pan-Cancer Signature of Neutral Tumor Evolution. https://doi.org/10.1101/014894
[78]
Tung, H.-R. and Durrett, R. (2021) Signatures of Neutral Evolution in Exponentially Growing Tumors: A Theoretical Perspective. PLoS Computational Biology, 17, e1008701. https://doi.org/10.1371/journal.pcbi.1008701
[79]
Fossion, R., Landa, E., Stransky, P., Velazquez, V., Lopez Vieyra, J.C., Garduno, I., et al. (2010) Scale Invariance as a Symmetry in Physical and Biological Systems: Listening to Photons, Bubbles and Heartbeats. AIP Conference Proceedings, 1323, 74-90. https://doi.org/10.1063/1.3537868
[80]
Goldenfeld, N. and Woese, C. (2010) Life Is Physics: Evolution as a Collective Phenomenon Far from Equilibrium.
[81]
West, B.J. and West, D. (2011) Are Allometry and Macroevolution Related? Physica A: Statistical Mechanics and Its Applications, 390, 733-1736. https://doi.org/10.1016/j.physa.2010.11.031
[82]
West, G.B. and Brown, J.H. (2005) The Origin of Allometric Scaling Laws in Biology from Genomes to Ecosystems: Towards a Quantitative Unifying Theory of Biological Structure and Organization. Journal of Experimental Biology, 208, 1575-1592. https://doi.org/10.1242/jeb.01589
[83]
Kempes, C.P., West, G.B. and Pepper, J.W. (2020) Paradox Resolved: The Allometric Scaling of Cancer Risk across Species. http://arxiv.org/abs/2011.11099
[84]
Paoloni, M.C. and Khanna, C. (2007) Comparative Oncology Today. Veterinary Clinics of North America: Small Animal Practice,37, 1023-1032. https://doi.org/10.1016/j.cvsm.2007.08.003
[85]
Kitsoulis, C.V., Baxevanis, A.D. and Abatzopoulos, T.J. (2020) The Occurrence of Cancer in Vertebrates: A Mini Review. Journal of Biological Research-Thessaloniki,27, 1-12. https://doi.org/10.1186/s40709-020-00119-0
[86]
Aktipis, C.A., Boddy, A.M., Jansen, G., Hibner, U., Hochberg, M.E., Maley, C.C. and Wilkinson, G.S. (2015) Cancer across the Tree of Life: Cooperation and Cheating in Multicellularity. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, Article ID: 20140219. https://doi.org/10.1098/rstb.2014.0219
[87]
Nunney, L., Maley, C.C., Breen, M., Hochberg, M.E. and Schiffman, J.D. (2015) Peto’S Paradox and the Promise of Comparative Oncology. Philosophical Transactions of the Royal Society B: Biological Sciences,370, Article ID: 20140177. https://doi.org/10.1098/rstb.2014.0177
[88]
Häusser, M. (2001) Synaptic Function: Dendritic Democracy. Current Biology,11, R10-R12. https://doi.org/10.1016/S0960-9822(00)00034-8
[89]
Dawkins, R. (1976) The Selfish Gene. Oxford University Press, Oxford.
[90]
McAvoy, A. and Nowak, M.A. (2019) Reactive Learning Strategies for Iterated Games. Proceedings of the Royal Society A,475, Article ID: 20180819. https://doi.org/10.1098/rspa.2018.0819
[91]
McAvoy, A. and Hauert, C. (2017) Autocratic Strategies for Alternating Games. Theoretical Population Biology,113, 13-22. https://doi.org/10.1016/j.tpb.2016.09.004
[92]
Nowak, M.A. and Sigmund, K. (1994) The Alternating Prisoner’s Dilemma. Journal of Theoretical Biology, 168, 219-226. https://doi.org/10.1006/jtbi.1994.1101
[93]
Ross-Gillespie, A. and Kümmerli, R. (2014) Collective Decision-Making in Microbes. Frontiers in Microbiology,5, Article No. 54. https://doi.org/10.3389/fmicb.2014.00054
[94]
Bhardway, N., Yan, K.K. and Gerstein, M.B. (2010) Analysis of Diverse Regulatory Networks in a Hierarchical Context Shows Consistent Tendencies for Collaboration in the Middle Levels. Proceedings of the National Academy of Sciences, 107, 6841-6846. https://doi.org/10.1073/pnas.0910867107
[95]
Johnson, B.R. and Lam, S.K. (2014) Self-Organization, Natural Selection, and Evolution: Cellular Hardware and Genetic Software. BioScience, 60, 879-885. https://doi.org/10.1525/bio.2010.60.11.4
[96]
Von Bertalanffy, K.L. (1934) Untersuchungen über die gesetzlichkeit des wachstums. I. Allgemeine grundlagen der theorie; mathematische und physiologische gesetzlichkeiten des wachstums bei wassertieren. Wilhelm Roux’ Archiv für Entwicklungsmechanik der Organismen, 131, 613-652. https://doi.org/10.1007/BF00650112
[97]
Green, D.M. (1991) Chaos, Fractals and Nonlinear Dynamics in Evolution and Phylogeny. Trends in Ecology & Evolution, 6, 334-337. https://doi.org/10.1016/0169-5347(91)90042-V
[98]
Glancy, J., Stone, J.V. and Wilson, S.P. (2016) How Self-Organization Can Guide the Evolution. Royal Society Open Science, 3, Article ID: 160553. https://doi.org/10.1098/rsos.160553
[99]
Turing, A.M. (1951) The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society of London. Series B,Biological Sciences, 237, 37-72. https://doi.org/10.1098/rstb.1952.0012
[100]
Gurwitsch, A.A. (1904) Morphologie Und Biologie Der Zelle. Monograph.
[101]
Losa, G.A. (2009) The Fractal Geometry of Life. Rivista di Biologia, 102, 29-59.
Maffini, M.V., Calabro, J.M., Soto, A.M. and Sonnenschein, C. (2005) Stromal Regulation of Neoplastic Development: Age-Dependent Normalization of Neoplastic Mammary Cells by Mammary Stroma. The American Journal of Pathology,167, 1405-1410. https://doi.org/10.1016/S0002-9440(10)61227-8
[104]
Bizzarri, M., Giuliani, A., Cucina, A., D’Anselmi, F., Soto, A.M. and Sonnenschein, C. (2011) Fractal Analysis in a Systems Biology Approach to Cancer. Seminars in Cancer Biology,21, 175-182. https://doi.org/10.1016/j.semcancer.2011.04.002
[105]
Tautu, P. (1994) Fractal and Non-Fractal Growth of Biological Cell Systems. In: Nonnenmacher, T.F., Losa, G.A. and Weibel, E.R., Eds., Fractals in Biology and Medicine,Birkhäuser, Basel, 86-103. https://doi.org/10.1007/978-3-0348-8501-0_7
[106]
Sole, R.V., Salazar-Ciudad, I. and Garcia-Fernandez, J. (2001) Common Pattern Formation, Modularity and Phase Transitions in a Gene Network Model of Morphogenesis. Physica A, 305, 640-654. https://doi.org/10.1016/S0378-4371(01)00580-5
[107]
Glen, C.M., Kemp, M.L. and Voit, E.O. (2019) Agent-Based Modeling of Morphogenetic Systems: Advantages and Challenges. PLOS Computational Biology, 15, e1006577. https://doi.org/10.1371/journal.pcbi.1006577
[108]
Szasz, A. (2023) Memristor Hypothesis in Malignant Charge Distribution. Open Journal of Biophysics, 13, 51-92. https://doi.org/10.4236/ojbiphy.2023.134005
[109]
Yang, K.-L., Huang, C.-C., Chi, M.-S., Chiang, H.-C., Wang, Y.-S., Andocs, G., et al. (2016) In Vitro Comparison of Conventional Hyperthermia and Modulated Electro-Hyperthermia. Oncotarget, 7, 84082-84092. https://doi.org/10.18632/oncotarget.11444
[110]
Andocs, G., Szasz, O. and Szasz, A. (2009) Oncothermia Treatment of Cancer: From the Laboratory to Clinic. Electromagnetic Biology and Medicine,8, 148-165. https://doi.org/10.1080/15368370902724633
[111]
Erdős, P. and Rényi, A. (1960) On the Evolution of Random Graphs. 5. Publication of the Mathematical Institute of the Hungarian Academy of Science. 17-61. http://www.math-inst.hu/~p_erdos/1960-10.pdf
[112]
Erdős, P. and Renyi, A. (2022) On Random Graphs. Publications Mathematicae, 6, 290-297. https://doi.org/10.5486/PMD.1959.6.3-4.12
[113]
Bollobás, B. (1985) Random Graphs. Academic, New York.
[114]
Barabási, A.-L. and Albert, R. (1999) Emergence of Scaling in Random Networks. Science, 286, 509-512. https://doi.org/10.1126/science.286.5439.509
[115]
Watts, D.J. and Strogatz, S.H. (1998) Collective Dynamics of “Small-World” Networks. Nature, 393, 440-442. https://doi.org/10.1038/30918
[116]
Barthelemy, M. and Amaral, L.A.N. (1999) Small-World Networks: Evidence for a Crossover Picture. Physical Review Letters, 82, 5180-5184. https://doi.org/10.1103/PhysRevLett.82.5180
[117]
Barrat, A. (1999) Comment on Small-World Networks: Evidence for a Crossover Picture.
[118]
Newman, M.E.J. and Watts, D.J. (1999) Renormalization Group Analysis of the Small-World Network Model. Physics Letters A, 263, 341-346. https://doi.org/10.1016/S0375-9601(99)00757-4
[119]
Milgram, S. (1967) The Small World Problem. Psychology Today, 2, 60-67. https://doi.org/10.1037/e400002009-005
[120]
Travers, J. and Milgram, S. (1969) An Experimental Study of the Small World Problem. Sociometry, 32, 425-443. https://doi.org/10.2307/2786545
[121]
Cohen, R. and Havlin, S. (2003) Scale-Free Networks Are Ultrasmall. Physical Review Letters, 90, Article ID: 058701. https://doi.org/10.1103/PhysRevLett.90.058701
[122]
Sattenspiel, L. and Simon, C.P. (1988) The Spread and Persistence of Infectious Diseases in Structured Populations. Mathematical Biosciences, 90, 341-366. https://doi.org/10.1016/0025-5564(88)90074-0
[123]
Jr. Longini, I.M. (1988) A Mathematical Model for Predicting the Geographic Spread of New Infectious Agents. Mathematical Biosciences, 90, 367-383. https://doi.org/10.1016/0025-5564(88)90075-2
[124]
Kretschmar, M. and Morris, M. (1996) Measures of Concurrency in Networks and the Spread of Infectious Disease. Mathematical Biosciences, 133, 165-195. https://doi.org/10.1016/0025-5564(95)00093-3
[125]
Brackley, C.A., Gilbert, N., Michieletto, D., et al. (2021) Complex Small-World Regulatory Networks Emerge from the 3D Organisation of the Human Genome. Nature Communications,12, Article No. 5756. https://doi.org/10.1038/s41467-021-25875-y
[126]
Albert, R. and Barabási, A.-L. (2003) Hierarcial Organisation in Complex Networks. Physical Review E, 67, Article ID: 026112. https://doi.org/10.1103/PhysRevE.67.026112
[127]
Merton, R.K. (1988) The Matthew Effect in Science, II: Cumulative Advantage and the Symbolism of Intellectual Property. Isis, 79, 606-623. http://www.jstor.org/stable/234750
[128]
Barzel, B., Liu, Y.Y. and Barabási, A.L. (2015) Constructing Minimal Models for Complex System Dynamics. Nature Communications,6, Article No. 7186. https://doi.org/10.1038/ncomms8186
[129]
Li, L., et al. (2005) Towards a Theory of Scale-Free Graphs: Definition, Properties, and Applications.
[130]
Albert, R. and Barabasi, A.-L. (2002) Statistical Mechanics of Complex Networks. Reviews of Modern Physics, 74, 47-97. https://doi.org/10.1103/RevModPhys.74.47
[131]
Berg, J. and Lassig, M. (2004) Local Graph Alignment and Motif Search in Biological Networks. Proceedings of the National Academy of Sciences of the United States of America,101, 14689-14694.
[132]
Berg, J., Lassig, M. and Wagner, A. (2004) Structure and Evolution of Protein Interaction Networks: A Statistical Model for Link Dynamics and Gene Duplications. BMC Ecology and Evolution,5, Article No. 51.
[133]
Wagner, A. (2003) How the Global Structure of Protein Interaction Networks Evolves. Proceedings of the Royal Society B,270, 457-466. https://doi.org/10.1098/rspb.2002.2269
[134]
De Silva, E. and Stumpf, M.P.H. (2005) Complex Networks and Simple Models in Biology. Journal of the Royal Society Interface, 2, 419-430. https://doi.org/10.1098/rsif.2005.0067
[135]
Bollobás, B., Riordan, O., Spencer, J. and Tusnády, G. (2001) The Degree Sequence of A Scale-Free Random Graph Process. Random Structures and Algorithms,18, 279-290. https://doi.org/10.1002/rsa.1009
[136]
Szabo, G., Alava, M. and Kertesz, J. (2002) Shortest Paths and Load Scaling in Scale Free Trees. Physical Review E, 66, Article ID: 026101. https://doi.org/10.1103/PhysRevE.66.026101
[137]
Sampaio Filho, C., Moreira, A., Andrade, R., et al. (2015) Mandala Networks: Ultra-Small-World and Highly Sparse Graphs. Scientific Reports, 5, Article No. 9082. https://doi.org/10.1038/srep09082
[138]
Achacoso, T.B. and Yamamoto, W.S. (1992) Ay’s Neuroanatomy of C. elegans for Computation. CRC Press, Boca Raton.
[139]
Li, S., et al. (2004) Amap of the Interactome Network of Themetazoan C. elegans. Science,303, 540-543. https://doi.org/10.1126/science.1091403
[140]
Bork, P., Jensen, L.J., Von Mering, C., Ramani, A.K., Lee, I. and Marcotte, E.M. (2004) Protein Interaction Networks from Yeast to Human. Current Opinion in Structural Biology, 14, 292-299. https://doi.org/10.1016/j.sbi.2004.05.003
[141]
Wagner, A. (2000) Robustness against Mutations in Genetic Networks of Yeast. Nature Genet, 24, 355-361. https://doi.org/10.1038/74174
[142]
Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. and Barabási, A.-L. (2000) The Large-Scale Organization of Metabolic Networks. Nature, 407, 651-654. https://doi.org/10.1038/35036627
[143]
Jeong, H., Mason, S.P., Barabási, A.-L. and Oltvai, Z.N. (2001) Lethality and Centrality in Protein Networks. Nature, 411, 41-42. https://doi.org/10.1038/35075138
[144]
Han, J.D., Bertin, N., Hao, T., et al. (2004) Evidence for Dynamically Organized Modularity in the Yeast Protein-Protein Interaction Network. Nature, 430, 88-93. https://doi.org/10.1038/nature02555
[145]
Winzeler, E.A., et al. (1999) Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis. Science, 285, 901-906.
[146]
Giaever, G., et al. (2002) Functional Profiling of the Saccharomyces cerevisiae Genome. Nature, 418, 387-391. https://doi.org/10.1038/nature00935
[147]
Newman, M. (2000) Models of the Small World. Journal of Statistical Physics,101, 819-841. https://doi.org/10.1023/A:1026485807148
[148]
Newman, M. and Watts, D. (1999) Scaling and Percolation in the Small-World Network Model. Physical Review E, 60, 7332-7342. https://doi.org/10.1103/PhysRevE.60.7332
[149]
Barabási, A.L. (2007) Network Medicine—From Obesity to the “Diseasome”. New England Journal of Medicine, 357, 404-407. https://doi.org/10.1056/NEJMe078114
[150]
Goh, K.-I., Cusick, M.E., Valle, D., Childs, B., Vidal, M. and Barabási, A.-L. (2007) The Human Disease Network. Proceedings of the National Academy of Sciences, 104, 8685-8690. https://doi.org/10.1073/pnas.0701361104
[151]
Barabási, A.-L., Gulbahce, N. and Loscalzo, J. (2011) Network Medicine: A Network-Based Approach to Human Disease. Nature Reviews Genetics, 12, 56-68. https://doi.org/10.1038/nrg2918
[152]
Menche, J., Sharma, A., Kitsak, M., Ghiassian, S.D., Vidal, M., Loscalzo, J. and Barabasi, A.-L. (2005) Uncovering Disease-Disease Relationships through the Incomplete Interactome. Science, 347, Article ID: 1257601. https://doi.org/10.1126/science.1257601
[153]
Sonawane, A.R., Weiss, S.T., Glass, K. and Sharma, A. (2019) Network Medicine in the Age of Biomedical Big Data. Frontiers in Genetics, 10, Article No. 294. https://doi.org/10.3389/fgene.2019.00294
[154]
Mewes, H.W., Frishman, D., Güldener, U., Mannhaupt, G., Mayer, K., Mokrejs, M., Morgenstern, B., Münsterkötter, M., Rudd, S. and Weil, B. (2002) MIPS: A Database for Genomes and Protein Sequences. Nucleic Acids Research, 30, 31-34. https://doi.org/10.1093/nar/30.1.31
[155]
Csermely, P. (2004) Strong Links Are Important—But Weak Links Stabilize Them. Trends in Biochemical Sciences,29, 331-334. https://doi.org/10.1016/j.tibs.2004.05.004
[156]
Granovetter, M.S. (1973) The Strength of Weak Ties. The American Journal of Sociology, 78, 1360-1380. https://doi.org/10.1086/225469
[157]
Csermely, P. (2006) Weak Links: A Universal Key for Network Diversity and Stability. Springer Verlag, Heidelberg.
[158]
Korcsmaros, T., Kovacs, I.A., Szalai, M.S. and Csermely, P. (2007) Molecular Chaperones: The Modular Evolution of Cellular Networks. Journal of Biosciences, 32, 441-446. https://doi.org/10.1007/s12038-007-0043-y
[159]
Kovacs, I.A., Szalay, M.S. and Csermely, P. (2005) Water and Molecular Chaperones Act as Weak Links of Protein Folding Networks: Energy Landscape and Punctuated Equilibrium Changes Point towards a Game Theory of Proteins. FEBS Letters,579, 2254-2260. https://doi.org/10.1016/j.febslet.2005.03.056
[160]
Song, C., Havlin, S. and Makse, H. (2006) Origins of Fractality in the Growth of Complex Networks. Nature Physics,2,275-281. https://doi.org/10.1038/nphys266
[161]
Barabasi, A.-L., Ravasz, E. and Vicsek, T. (2001) Deterministic Scale-Free Networks. Physica A,299, 559-564. https://doi.org/10.1016/S0378-4371(01)00369-7
[162]
Csermely, P., Korcsmáros, T., Kiss, H.J.M., London, G. and Nussinov, R. (2013) Structure and Dynamics of Biological Networks: A Novel Paradigm of Drug Discovery. A Comprehensive Review. Pharmacology and Therapeutics, 138, 333-408. https://doi.org/10.1016/j.pharmthera.2013.01.016
[163]
Gyorgy, A. and Del Vecchio, D. (2014) Modular Composition of Gene Transcription Networks. PLoS Computational Biology,10, E1003486. https://doi.org/10.1371/journal.pcbi.1003486
[164]
Vidal, M., Cusick, M.E. and Barabási, A.L. (2011) Interactome Networks and Human Disease. Cell, 144, 986-998. https://doi.org/10.1016/j.cell.2011.02.016
[165]
Jordan, J.D., Landau, E.M. and Iyengar, R. (2000) Signaling Networks: The Origins of Cellular Multitasking. Cell, 103, 193-200. https://doi.org/10.1016/S0092-8674(00)00112-4
[166]
Wagner, A. and Fell, D.A. (2001) The Small World inside Large Metabolic Networks. Proceedings: Biological Sciences, 268, 1803-1810. https://doi.org/10.1098/rspb.2001.1711
[167]
Freeman, L. (1977) A Set of Measures of Centrality Based on Betweenness. Sociometry, 40, 35-41. https://doi.org/10.2307/3033543
[168]
Kitsak, M., Havlin, S., Paul, G., Riccaboni, M., Pammolli, F. and Stanley, H.E. (2006) Betweenness Centrality of Fractal and Nonfractal Scale-Free Model Networks and Tests on Real Networks. Physical Review E, 75, Article ID: 056115. https://doi.org/10.1103/PhysRevE.75.056115
[169]
Kauffman, S. (1969) Metabolic Stability and Epigenesis in Randomly Constructed Genetic Nets. Journal of Theoretical Biology,22, 437-467. https://doi.org/10.1016/0022-5193(69)90015-0
[170]
Kuramoto, Y. (1984) Chemical Oscillations, Waves, and Turbulence. Springer, Berlin. https://doi.org/10.1007/978-3-642-69689-3
[171]
Van Noort, V., Snel, B. and Huynen, M.A. (2004) The Yeast Coexpression Network Has a Small-World, Scale-Free Architecture and Can Be Explained by a Simple Model. EMBO Reports, 5, 280-284. https://doi.org/10.1038/sj.embor.7400090
[172]
Albert, R. (2005) Scale-Free Networks in Cell Biology. Journal of Cell Science,118, 4947-4957. https://doi.org/10.1242/jcs.02714
[173]
KovACs, I.A., Luck, K., Spirohn, K., et al. (2019) Network-Based Prediction of Protein Interactions. Nature Communications, 10, Article No. 1240. https://doi.org/10.1038/s41467-019-09177-y
[174]
Frishman, D., Albrecht, M., Blankenburg, H., Bork, P., Harrington, E.D., Hermjakob, H., Juhl, Jensen L., Juan, D.A., Lengauer, T., Pagel, P., Schachter, V. and Valencia, A. (2009) Protein-Protein Interactions: Analysis and Prediction. Modern Genome Annotation, 1, 353-410. https://doi.org/10.1007/978-3-211-75123-7_17
[175]
Hartwell, L.H., Hopfield, J.J., Leibler, S. and Murray, A.W. (1999) From Molecular to Modular Cell Biology. Nature, 402, C47-C52. https://doi.org/10.1038/35011540
[176]
Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N. and Barabási, A.L. (2002) Hierarchical Organization of Modularity in Metabolic Networks. Science, 297, 1551-1555. https://doi.org/10.1126/science.1073374
[177]
Krapivsky, P.L. and Redner, S. (2004) Log-Networks.
[178]
Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A. and Upfal, E. (2000) Stochastic Models for the Web Graph. Proceedings 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, 12-14 November 2000, 57-65.
[179]
Bhan, A., Galas, D.J. and Dewey, T.G. (2002) A Duplication Growth Model of Gene Expression Networks. Bioinformatics, 18, 1486-1493. https://doi.org/10.1093/bioinformatics/18.11.1486
[180]
Bianconi, G. and Barabasi, A.-L. (2001) Competition and Multiscaling in Evolving Networks. Europhysics Letters, 54, Article No. 436. https://doi.org/10.1209/epl/i2001-00260-6
[181]
Falkenberg, M., Lee, J.-H., Amano, S.-I., Ogawa, K.-I., et al. (2020) Identifying Time Dependence in Network Growth. Physical Review Research, 2, Article ID: 023352. https://doi.org/10.1103/PhysRevResearch.2.023352
[182]
Broido, A.D. and Clauset, A. (2019) Scale-Free Networks Are Rare. Nature Communications, 10, Article No. 1017. https://doi.org/10.1038/s41467-019-08746-5
[183]
Falkenberg, M. (2021) Heterogeneous Node Copying from Hidden Network Structure. Communications Physics, 4, Article No. 200. https://doi.org/10.1038/s42005-021-00694-1
[184]
Granovetter, M.S. (1983) The Strength of Weak Ties: A Network Theory Revisited. Sociological Theory, 1, 201-233. https://doi.org/10.2307/202051
[185]
Gurevich, M. (1961) The Social Structure of Acquaintanceship Networks. MIT Press, Cambridge.
[186]
De Sola Pool, I. and Kochen, M. (1978-1979) Contacts and Influence. Social Networks, 1, 5-51. https://doi.org/10.1016/0378-8733(78)90011-4
[187]
Samoylenko, I., Aleja, D., Primo, E., Alfaro-Bittner, K., Vasilyeva, E., et al. (2023) Why Are There Six Degrees of Separation in a Social Network? Physical Review X,13, Article ID: 021032. https://doi.org/10.1103/PhysRevX.13.021032
[188]
Zhang, Z. and Zhang, J. (2009) A Big World inside Small-World Networks. PLOS ONE, 4, e5686. https://doi.org/10.1371/journal.pone.0005686
[189]
Li, C., Chen, J. and Li, S.C. (2020) Understanding Horizontal Gene Transfer Network in Human Gut Microbiota. Gut Pathogens, 12, Article No. 33. https://doi.org/10.1186/s13099-020-00370-9
[190]
Chiang, M.C., Barysheva, M., McMahon, K.L., De Zubicaray, G.I., Johnson, K., Montgomery, G.W., Martin, N.G., Toga, A.W., Wright, M.J., Shapshak, P. and Thompson, P.M. (2012) Gene Network Effects on Brain Microstructure and Intellectual Performance Identified in 472 Twins. Journal of Neuroscience, 32, 8732-8745. https://doi.org/10.1523/JNEUROSCI.5993-11.2012
[191]
Gu, Z., et al. (2003) Role of Duplicate Genes in Genetic Robustness against Null Mutations. Nature, 421, 63-66. https://doi.org/10.1038/nature01198
[192]
Bartsch, R.P., Liu, K.K., Bashan, A. and Ivanov, P.Ch. (2015) Network Physiology: How Organ Systems Dynamically Interact. PLOS ONE, 10, E0142143. https://doi.org/10.1371/journal.pone.0142143
[193]
West, B.J., Grigolini, P., Kerick, S.E., Franaszczuk, P.J. and Mahmoodi, K. (2023) Complexity Synchronization of Organ Networks. Entropy (Basel), 25, Article No. 1393. https://doi.org/10.3390/e25101393
[194]
Sin, C. and Menche, J. (2020) Chapter 9. The Network of Networks Involved in Human Disease. In: Kiani, N.A., Gomez-Cabrero, D. and Bianconi, G., Eds., Networks of Networks in Biology: Concepts, Tools and Applications, Cambridge University Press, Cambridge, 147-171.
[195]
Jeffrey, H.J. (1990) Chaos Game Representation of Gene Structure. Nucleic Acids Research, 18, 2163-2170. https://doi.org/10.1093/nar/18.8.2163
[196]
Libretti, S. and Puckett, Y. (2023) Physiology, Homeostasis. StatPearls Publishing, Treasure Island.
[197]
Nash, J.F. (1950) Equilibrium Points in N-Person Games. Proceedings of the National Academy of Sciences of the United States of America,36, 48-49. https://doi.org/10.1073/pnas.36.1.48
[198]
Rendon, A.Y. and Alvarado, M. (2014) Methodology for the Modeling of Multi-Player Games. Conference Paper, 8th International Conference on Circuits,Systems,Communications and Computers (CSCC 2014), Volume 2, 353-358. https://www.researchgate.net/publication/265843563_Methodology_for_the_Modeling_of_Multi-Player_Games
[199]
Ni, C., Dinh, C.V. and Prather, K.L.J. (2021) Dynamic Control of Metabolism. Annual Review of Chemical and Biomolecular Engineering, 12, 519-541. https://doi.org/10.1146/annurev-chembioeng-091720-125738
[200]
Smith, J.M. and Price, G.R. (1973) The Logic of Animal Conflict. Nature, 246, 15-18. https://doi.org/10.1038/246015a0
[201]
Rapoport, A. and Chammah, A.M. (1966) The Game of Chicken. Annual Review of Chemical and Biomolecular Engineering, 10, 10-28. https://doi.org/10.1177/000276426601000303
[202]
Sugden, R. (1986) The Economics of Rights, Cooperation and Welfare, B. Blackwell, Oxford.
[203]
Szigeti, Gy.P., Szasz, O. and Hegyi, G. (2016) Personalised Dosing of Hyperthermia. Journal of Cancer Diagnosis, 1, Article No. 107. https://www.omicsonline.org/open-access/personalised-dosing-of-hyperthermia-.pdf
[204]
Wan, Z., Mahajan, Y., Kang, B.W., Moore, T.J. and Cho, J.-H. (2021) A Survey on Centrality Metrics and Their Network Resilience Analysis. IEEE Access, 9, 104773-104819. https://doi.org/10.1109/ACCESS.2021.3094196
[205]
Estrada E. and Rodríguez-Velázquez, J.A. (2005) Subgraph Centrality in Complex Networks. Physical Review E, 71, Article ID: 056103. https://doi.org/10.1103/PhysRevE.71.056103
[206]
Albert, R., Jeong, H. and Barabási, A.-L. (2000) Error and Attack Tolerance of Complex Networks. Nature, 406, 378-382. https://doi.org/10.1038/35019019
[207]
Callaway, D.S., Newman, M.E.J., Strogatz, S.H. and Watts, D.J. (2000) Network Robustness and Fragility: Percolation on Random Graphs. Physical Review Letters, 85, 5468-5471. https://doi.org/10.1103/PhysRevLett.85.5468
[208]
Holme, P., Kim, B.J., Yoon, C.N. and Han, S.K. (2002) Attack Vulnerability of Complex Networks. Physical Review E, 65, Article ID: 056109. https://doi.org/10.1103/PhysRevE.65.056109
[209]
Yoon, S., Ha, T., Kim, S. and Lim, H. (2017) Scalable Traffic Sampling Using Centrality Measure on Software-Defined Networks. IEEE Communications Magazine, 55, 43-49. https://doi.org/10.1109/MCOM.2017.1600990
[210]
Koschützki, D. and Schreiber, F. (2008) Centrality Analysis Methods for Biological Networks and Their Application to Gene Regulatory Networks. Gene Regulation and Systems Biology, 2, GRSB.S702. https://doi.org/10.4137/GRSB.S702
[211]
Karabekmez, M.E. and Kirdar, B. (2016) A Novel Topological Centrality Measure Capturing Biologically Important Proteins. Molecular BioSystems,12, 666-673. https://doi.org/10.1039/C5MB00732A
[212]
Mistr, D., Wise, M.P. and Dickerson, J.A. (2017) DiffSLC: A Graph Centrality Method to Detect Essential Proteins of a Protein-Protein Interaction Network. PLOS ONE, 12, e0187091. https://doi.org/10.1371/journal.pone.0187091
[213]
Mukherjee, S. (2010) The Emperor of All Maladies: A Biography of Cancer. Scribner, New York.
[214]
Rous, P. (1910) A Transmissible Avian Neoplasm (Sarcoma of the Common Fowl). Journal of Experimental Medicine, 12, 696-705. https://doi.org/10.1084/jem.12.5.696
[215]
Weiss, R.A. and Vogt, P.K. (2011) 100 Years of Rous Sarcoma Virus. Journal of Experimental Medicine, 208, 2351-2355. https://doi.org/10.1084/jem.20112160
[216]
Boveri, T. (1929, 1914) Zur frage der entstehung maligner tumoren (Gustav Fischer, Jena). Williams and Wilkins, Baltimore.
[217]
Knudson, A.G. (2001) Two Genetic Hits (More or Less) to Cancer. Nature Reviews. Cancer, 1, 157-162. https://doi.org/10.1038/35101031
[218]
Wunderlich, V. (2007) Early References to the Mutational Origin of Cancer. International Journal of Epidemiology,36, 246-247. https://doi.org/10.1093/ije/dyl272
[219]
Burnet, F.M. (1957) Cancer: A Biological Approach. British Medical Journal, 1, 841-847. https://doi.org/10.1136/bmj.1.5023.841
[220]
Dunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J. and Schreiber, R.D. (2002) Cancer Immunoediting: From Immunosurveillance to Tumour Escape. Nature Immunology, 3, 991-998. https://doi.org/10.1038/ni1102-991
[221]
Dvorak, H.F. (1986) Tumours: Wounds That Do Not Heal. Similarities between Tumour Stroma Generation and Wound Healing. The New England Journal of Medicine, 315, 1650-1659. https://doi.org/10.1056/NEJM198612253152606
[222]
Tennant, R.W. (1993) A Perspective on Non-Mutagenic Mechanisms in Carcinogenesis. Environmental Health Perspectives,101, 231-236. https://doi.org/10.1289/ehp.93101s3231
[223]
Sonnenschein, C. and Soto, A.M. (2000) Somatic Mutation Theory of Carcinogenesis: Why It Should Be Dropped and Replaced. Molecular Carcinogenesis, 29, 205-211. https://doi.org/10.1002/1098-2744(200012)29:4<205::AID-MC1002>3.0.CO;2-W
[224]
Feinberg, A.P., Ohlsson, R. and Henikoff, S. (2006) The Epigenetic Progenitor Origin of Human Cancer. Nature Reviews Genetics,7, 21-33. https://doi.org/10.1038/nrg1748
[225]
Bukhtoyarov, O.V. and Samarin, D.M. (2015) Pathogenesis of Cancer: Cancer Reparative Trap: Journal of Cancer Therapy, 6, 399-412. https://doi.org/10.4236/jct.2015.65043
[226]
Trichopoulos, D., Li, F.P. and Hunter, D.J. (1996) What Causes Cancer? Scientific American Magazine, 275, 80-87. https://doi.org/10.1038/scientificamerican0996-80
[227]
Merlino, G. and Khanna, C. (2007) Fishing for the Origins of Cancer. Genes & Development,21, 1275-1279. https://doi.org/10.1101/gad.1563707
[228]
Hameroff, S.R. (2004) A New Theory of the Origin of Cancer: Quantum Coherent Entanglement, Centrioles, Mitosis, and Differentiation. Biosystems, 77, 119-136. https://doi.org/10.1016/j.biosystems.2004.04.006
[229]
Rycaj, K. and Tang, D.G. (2015) Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations. Cancer Research,75, 4003-4011. https://doi.org/10.1158/0008-5472.CAN-15-0798
[230]
White, A.C. and Lowry, W.E. (2015) Refining the Role for Adult Stem Cells as Cancer Cells of Origin. Trends in Cell Biology,25, 11-20. https://doi.org/10.1016/j.tcb.2014.08.008
[231]
Gold, S.S., Ames, B.N. and Slone, T.H. (2002) Misconceptions about the Causes of Cancer. In: Paustenbach, D., Ed., Human and Environmental Risk Assessment: Theory and Practice, John Wiley & Sons, New York, 1415-1460.
[232]
Danaei, G., Hoom V.S., Lopez, A.D., Murray, C.J. and Ezzati, M. (2005) Comparative Risk Assessment Collaborating Group (Cancers) Causes of Cancer in the World: Comparative Risk Assessment of Nine Behavioural and Environmental Risk Factors. The Lancet, 366, 1784-1793. https://doi.org/10.1016/S0140-6736(05)67725-2
[233]
Clapp, R.W., Jacobs, M.M. and Loechler, E.L. (2008) Environmental and Occupational Causes of Cancer: New Evidence 2005-2007. Reviews on Environmental Health, 23, 1-37. https://doi.org/10.1515/REVEH.2008.23.1.1
[234]
Anderson, M.W., et al. (1992) Role of Proto-Oncogene Activation in Carcinogenesis. Environmental Health Perspectives, 98, 13-24. https://doi.org/10.1289/ehp.929813
[235]
Meden, H., et al. (1994) Elevated Serum Levels of a C-ErbB-2 Oncogene Product in Ovarian Cancer Patients and in Pregnancy. Journal of Cancer Research and Clinical Oncology,120, 378-381. https://doi.org/10.1007/BF01247465
[236]
Attie-Bitach, T., et al. (1998) Expression of the RET Proto-Oncogene in Human Embryos. American Journal of Medical Genetics, 80, 481-486. https://doi.org/10.1002/(SICI)1096-8628(19981228)80:5<481::AID-AJMG8>3.0.CO;2-6
[237]
Quenby, S.M., et al. (1999) Oncogenes and Tumour Suppressor Genes in First Trimester Human Foetal Gonadal Development. Molecular Human Reproduction, 5, 737-741. https://doi.org/10.1093/molehr/5.8.737
[238]
Okada, Y., et al. (1996) Expression of Fos Family and Jun Family Proto-Oncogenes during Corneal Epithelial Wound Healing. Current Eye Research, 15, 824-832. https://doi.org/10.3109/02713689609017623
[239]
Stiles, C.D. (1985) The Biological Role of Oncogenes-Insights from Platelet-Derived Growth Factor: Rhoads Memorial Award Lecture. Cancer Research, 45, 5215-5218.
[240]
Muthuswamy, S.K. (2021) Self-Organization in Cancer: Implications for Histopathology, Cancer Cell Biology, and Metastasis. Cancer Cell, 39, 443-446. https://doi.org/10.1016/j.ccell.2021.01.010
[241]
Balmain, A., Gray, J. and Ponder, B. (2014) The Genetics and Genomics of Cancer. Nature Genetics Supplement, 33, 238-244. https://doi.org/10.1038/ng1107
[242]
Szigeti, G.P., Szasz, O. and Hegyi, G. (2017) Connections between Warburg’s and Szentgyorgyi’s Approach about the Causes of Cancer. Journal of Neoplasm, 1, 1-13.
[243]
Hanahan, D. and Weinberg, R.A. (2000) The Hallmarks of Cancer. Cell, 100, 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
[244]
Dyas, F.G. (1928) Chronic Irritation as a Cause of Cancer. Journal of the American Medical Association, 90, 457. https://doi.org/10.1001/jama.1928.92690330003008c
[245]
Byun, J.S. and Gardner, K. (2013) Wounds That Will Not Heal, Pervasive Cellular Reprogramming in Cancer. TheAmerican Journal of Pathology,182, 1055-1064. https://doi.org/10.1016/j.ajpath.2013.01.009
[246]
Platz, E.A. and De Marzo, A.M. (2004) Epidemiology of Inflammation and Prostate Cancer. Journal of Urology, 171, S36-S40. https://doi.org/10.1097/01.ju.0000108131.43160.77
[247]
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
[248]
Punyiczki, M. and Fesus, L. (1998) Heat Shock and Apoptosis: The Two Defense Systems of the Organisms May Have Overlapping Molecular Elements. Annals of the New York Academy of Sciences,951, 67-74. https://doi.org/10.1111/j.1749-6632.1998.tb08978.x
[249]
Soto, A.M. and Sonnenschein, C. (2021) The Cancer Puzzle: Welcome to Organicism. Progress in Biophysics and Molecular Biology, 165, 114-119. https://doi.org/10.1016/j.pbiomolbio.2021.07.001
[250]
Hatlee, M.D. and Kozak, J.J. (1981) Stochastic Flows in Integral and Fractal Dimensions and Morphogenesis. Proceedings of the National Academy of Sciences of the United States of America,78, 972-975. https://doi.org/10.1073/pnas.78.2.972
[251]
Fosslien, E. (2008) Cancer Morphogenesis: Role of Mitochondrial Failure. Annals of Clinical & Laboratory Science,38, 307-329.
[252]
Hockel, M. and Behn, U. (2019) The Order of Cancer: A Theory of Malignant Progression by Inverse Morphogenesis. Frontiers in Oncology, 9, Article No. 416. https://doi.org/10.3389/fonc.2019.00416
[253]
Levin, M. (2012) Morphogenetic Fields in Embryogenesis, Regeneration, and Cancer: Non-Local Control of Complex Patterning. Biosystems, 109, 243-261. https://doi.org/10.1016/j.biosystems.2012.04.005
[254]
Levin, M. (2011) The Wisdom of the Body: Future Techniques and Approaches to Morphogenetic Fields in Regenerative Medicine, Developmental Biology and Cancer. Regenerative Medicine,6, 667-673. https://doi.org/10.2217/rme.11.69
[255]
Szigeti, Gy.P., Szasz, A.M. and Szasz, A. (2020) The Growth of Healthy and Cancerous Tissues. Open Journal of Biophysics, 10, 113-128. https://doi.org/10.4236/ojbiphy.2020.103010
[256]
Szasz, A. (2021) Vascular Fractality and Alimentation of Cancer. International Journal of Clinical Medicine,12, 279-296. https://doi.org/10.4236/ijcm.2021.127025
[257]
Sedivy, R. and Mader, R.M. (1997) Fractals, Chaos, and Cancer: Do They Coincide? Cancer Investigation, 15, 601-607. https://doi.org/10.3109/07357909709047603
[258]
Sokolov, I. and Dokukin, M.E. (2017) Fractal Analysis of Cancer Cell Surface. Methods in Molecular Biology,1530, 229-245. https://doi.org/10.1007/978-1-4939-6646-2_13
[259]
Tambasco, M. and Magliocco, A.M. (2008) Relationship between Tumor Grade and Computed Architectural Complexity in Breast Cancer Specimens. Human Pathology, 39, 740-746. https://doi.org/10.1016/j.humpath.2007.10.001
[260]
Ballerini, L. and Franzén, L. (2005) Fractal Analysis of Microscopic Images of Breast Tissue.
[261]
Delides, A., Panayiotides, I., Alegakis, A., Kyroudi, A., Banis, C., Pavlaki, A., Helidonis, E. and Kittas, C. (2005) Fractal Dimension as a Prognostic Factor for Laryngeal Carcinoma. Anticancer Research, 25, 2141-2144.
Kirci, P. and Bayrak, E.A. (2019) The Application of Fractal Analysis on Thyroid Ultrasound Images. Acta Infologica, 3, 83-90. https://doi.org/10.26650/acin.496129
[264]
Metze, K., Adam, R. and Florindo, J.B. (2019) The Fractal Dimension of Chromatin—A Potential Molecular Marker for Carcinogenesis, Tumor Progression and Prognosis. Expert Review of Molecular Diagnostics, 19, 299-312. https://doi.org/10.1080/14737159.2019.1597707
[265]
Tang, X.W., Liu, J.B. and Wu, B.C. (1994) Fractal Property of the Cytoskeleton in the Living Cells. Chinese Physics Letters, 11, 522-525. https://doi.org/10.1088/0256-307X/11/8/016
[266]
Gardiner, J., Overall, R. and Marc, J. (2012) Plant Microtubule Cytoskeleton Complexity: Microtubule Arrays as Fractals. Journal of Experimental Botany, 63, 635-642. https://doi.org/10.1093/jxb/err312
[267]
Baish, J.W. and Jain, R.K. (2000) Fractals and Cancer. Cancer Research, 60, 3683-3688.
[268]
Chimal-Eguía, J.C., Castillo-Montiel, E. and Paez-Hernández, R.T. (2020) Properties of the Vascular Networks in Malignant Tumors. Entropy, 22, Article No. 166. https://doi.org/10.3390/e22020166
[269]
Raś, A., Otrocka-Domagała, I. and Raś-Noryńska, M. (2020) Two Different Clinical Forms of Squamous Cell Carcinoma (SCC) in the Perineum and Vulva of Two Mares. BMC Veterinary Research, 16, Article No. 464. https://doi.org/10.1186/s12917-020-02678-9
[270]
Vasilescu, C., Giza, D.E., Petrisor, P., Dobrescu, R., Poescu, I. and Herlea, V. (2012) Morphometrical Differences between Resectable and Non-Resectable Pancreatic Cancer: A Fractal Analysis. Hepato-Gastroenterology, 59, 284-288. https://doi.org/10.5754/hge11277
[271]
Axenie, C., Bauer, R. and Martínez, M.R. (2021) The Multiple Dimensions of Networks in Cancer: A Perspective. Symmetry, 13, Article No. 1559. https://doi.org/10.3390/sym13091559
[272]
Poornima, P., Kumar, J.D., Zhao, O., Blunder, M. and Efferth, T. (2016) Network Pharmacology of Cancer: From Understanding of Complex Interactomes to the Design of Multi-Target Specific Therapeutics from Nature, Pharmacological Research,111, 290-302. https://doi.org/10.1016/j.phrs.2016.06.018
[273]
Ozturk, K., Dow, M., Carlin, D.E., Bejar, R. and Carter, H. (2018) The Emerging Potential for Network Analysis to Inform Precision Cancer Medicine. Journal of Molecular Biology,430, 2875-2899. https://doi.org/10.1016/j.jmb.2018.06.016
[274]
Kim, Y.-A., Cho, D.-Y. and Przytycka, T.M. (2016) Understanding Genotype-Phe-notype Effects in Cancer via Network Approaches. PLoS Computational Biology,12, e1004747. https://doi.org/10.1371/journal.pcbi.1004747
[275]
Trigos, A.S., Pearson, R.B., Papenfuss, A.T., et al. (2016) Altered Interactions between Unicellular and Multicellular Genes Drive Hallmarks of Transformation in a Diverse Range of Solid Tumors. Proceedings of the National Academy of Science, 114, 6406-6411. https://doi.org/10.1073/pnas.1617743114
Boyle, E.A., Li, Y.I. and Pritchard, J.K. (2017) An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell, 169, 1177-1186. https://doi.org/10.1016/j.cell.2017.05.038
[278]
Liu, X.., Li, Y.I. and Pritchard, J.K. (2019) Trans Effects on Gene Expression Can Drive Omnigenic Inheritance. Cell, 177, 1022-1034. https://doi.org/10.1016/j.cell.2019.04.014
[279]
Csermely, P. (2021) Adaptation of Molecular Interaction Networks in Cancer Cells. In: Strauss, B., Bertolaso, M., Ernberg, I. and Bissell, M.J., Eds., Rethinking Cancer: A New Paradigm for the Postgenomic Era, The MIT Press, Cambridge, 141-162.
[280]
Gyurkó, D.M., Veres, D.V., Módos, D., Lenti, K., Korcsmáros, T. and Csermely, P. (2013) Adaptation and Learning of Molecular Networks as a Description of Cancer Development at the Systems-Level: Potential Use in Anti-Cancer Therapies. Seminars in Cancer Biology, 23, 262-269. https://doi.org/10.1016/j.semcancer.2013.06.005
[281]
Parekh, V.S., Pillai, J.J., Macura, K.J., LaViolette, P.S. and Jacobs, M.A. (2022) Tumor Connectomics: Mapping the Intra-Tumoral Complex Interaction Network Using Machine Learning. Cancers, 14, Article No. 1481. https://doi.org/10.3390/cancers14061481
[282]
Chatzaroulas, E., Sliogeris, V., Victori, P., Buffa, F.M., Moschoyiannis, S. and Bauer, R. (2022) A Structural Characterisation of the Mitogen-Activated Protein Kinase Network in Cancer. Symmetry, 14, Article No. 1009. https://doi.org/10.3390/sym14051009
[283]
Danenberg, E., Bardwell, H., Zanotelli, V.R.T., Provenzano, E., Chin, S.F., Rueda, O.M., Green, A., Rakha, E., Aparicio, S., Ellis, I.O., Bodenmiller, B., Caldas, C. and Ali, H.R. (2022) Breast Tumor Microenvironment Structures Are Associated with Genomic Features and Clinical Outcome. Nature Genetics,54, 660-669. https://doi.org/10.1038/s41588-022-01041-y
[284]
Talaat, I.M. and Kim, B. (2022) A Brief Glimpse of a Tangled Web in a Small World: Tumor Microenvironment. Frontiers in Medicine (Lausanne), 9, Article ID: 1002715. https://doi.org/10.3389/fmed.2022.1002715
[285]
Fouladzadeh, A., Dorraki, M., Min, K.K.M., Cockshell, M.P., Thompson, E.J., Verjans, J.W., Allison, A., Bonder, C.S. and Abbott, D. (2021) The Development of Tumour Vascular Networks. Communications Biology, 4, Article No. 1111. https://doi.org/10.1038/s42003-021-02632-x
[286]
Zhou, M., Liu, J. and Wang, S. (2017) A Comparative Study of Robustness Measures for Cancer Signaling Networks. Big Data and Information Analytics, 2, 87-96. https://doi.org/10.3934/bdia.2017011
[287]
Song, W.M. and Zhang, B. (2015) Multiscale Embedded Gene Co-Expression Network Analysis. PLoS Computational Biology, 11, e1004574. https://doi.org/10.1371/journal.pcbi.1004574
[288]
Song, W.M., Di Matteo, T. and Aste, T. (2012) Building Complex Networks with Platonic Solids. Physical Review E,Statistical,Nonlinear,and Soft Matter Physics, 85, Article ID: 046115. https://doi.org/10.1103/PhysRevE.85.046115
[289]
Song, W.M., Di Matteo, T. and Aste, T. (2011) Nested Hierarchies in Planar Graphs. Discrete Applied Mathematics, 159, 2135-2146. https://doi.org/10.1016/j.dam.2011.07.018
[290]
Pe’Er, D. and Hacohen, N. (2011) Principles and Strategies for Developing Network Models in Cancer. Cell, 144, 864-873. https://doi.org/10.1016/j.cell.2011.03.001
[291]
Huang, S. and Ingber, D.E. (2006) A Non-Genetic Basis for Cancer Progression and Metastasis: Self-Organizing Attractors in Cell Regulatory Networks. Breast Diseases, 26, 27-54. https://doi.org/10.3233/BD-2007-26104
[292]
Vineis, P., Schatzkin, A. and Potter, J.D. (2010) Models of Carcinogenesis: An Overview. Carcinogenesis, 31, 1703-1709. https://doi.org/10.1093/carcin/bgq087
[293]
Glass, K., Quackenbush, J., Spentzos, D., Haibe-Kains, B. and Yuan, G.C. (2015) A Network Model for Angiogenesis in Ovarian Cancer. BMC Bioinformatics, 16, Article No. 115. https://doi.org/10.1186/s12859-015-0551-y
[294]
Szasz, O., Szigeti, Gy.P., Szasz, A. and Benyo, Z. (2018) Role of Electrical Forces in Angiogenesis. Open Journal of Biophysics, 8, 49-67. https://doi.org/10.4236/ojbiphy.2018.82005
[295]
Chen, A.X., Zopf, C.J., Mettetal, J., Shyu, W.C., et al. (2020) Scale-Free Structure of Cancer Networks and Their Vulnerability to Hub-Directed Combination Therapy. https://doi.org/10.1101/2020.07.01.159657
[296]
Das, A.B. (2020) Small-World Networks of Prognostic Genes Associated with Lung Adenocarcinoma Development. Genomics, 112, 4078-4088. https://doi.org/10.1016/j.ygeno.2020.07.018
[297]
Wang, Y., Huang, T., Li, Y. and Sha, X. (2020) The Self-Organization Model Reveals Systematic Characteristics of Aging. Theoretical Biology and Medical Modelling, 17, Article No. 4. https://doi.org/10.1186/s12976-020-00120-z
[298]
Beheshti, A., Benzekry, S., McDonald, J.T., Ma, L., Peluso, M., Hahnfeldt, P. and Hlatky, L. (2015) Host Age Is a Systemic Regulator of Gene Expression Impacting Cancer Progression. Cancer Research, 75, 1134-1143. https://doi.org/10.1158/0008-5472.CAN-14-1053
[299]
Weinberg, R.A. (1998) One Renegade Cell. Basic Books, New York.
[300]
Lichtenstein, A.V. (2018) Genetic Mosaicism and Cancer: Cause and Effect. Cancer Research, 78, 1375-1378. https://doi.org/10.1158/0008-5472.CAN-17-2769
[301]
Breivik, J. (2005) The Evolutionary Origin of Genetic Instability in Cancer Development. Seminars in Cancer Biology,15, 51-60. https://doi.org/10.1016/j.semcancer.2004.09.008
[302]
Horvath, S. (2013) DNA Methylation Age of Human Tissues and Cell Types. Genome Biology, 14, R115. https://doi.org/10.1186/gb-2013-14-10-r115
[303]
Himmelstein, D.U., Levins, R. and Woolhandler, S. (1990) Beyond Our Means: Patterns of Variability of Physiological Traits. International Journal of Health Services,20, 115-124. https://doi.org/10.2190/BKDL-N7DB-BDW8-DPYY
[304]
Braess, D. (1968) Über ein paradoxon aus der verkehrsplanung. Unternehmen-sforschung Operations Research-Recherche Operationnelle, 12, 258-268. https://doi.org/10.1007/BF01918335
[305]
Roughgarden, T. and Tartos, E. (2001) How Bad Is the Selfish Routing? https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahukewi03ampryeeaxwahf0hhfrlcoiqfnoeca8qaq&url=https://theory.stanford.edu/~tim/papers/routing.pdf&usg=aovvaw1n8hpm_urhlxripqvecgbu&opi=89978449m
[306]
Csermely, P. and Soti, C. (2006) Cellular Networks and the Aging Process. Archives of Physiology and Biochemistry, 112, 60-64. https://doi.org/10.1080/13813450600711243
[307]
Dobrescu, R., Vasilescu, C. and Ichim, L. (2006) Using Fractal Dimension in Tumor Growth Evaluation. Proceedings of the 5th WSEAS International Conference on Non-Linear Analysis, Non-Linear Systems and Chaos, Romania Bucharest, 16-18 October 2006, 63-68.
[308]
Higuchi, T. (1990) Relationship between the Fractal Dimension and the Power Law Index for a Time Series: A Numerical Investigation. Physica D: Nonlinear Phenomena, 46, 254-264. https://doi.org/10.1016/0167-2789(90)90039-R
[309]
Popkin, G. (2011) Physics Sheds Light on Cancer and Bacteria Evolution. APC News, 20. https://www.aps.org/publications/apsnews/201105/cancerbacteria.cfm
[310]
Trigos, A.S., Pearson, R.B., Paenfuss, A.T., et al. (2018) How the Evolution of Multicellularity Set the Stage for Cancer. British Journal of Cancer, 118, 145-152. https://doi.org/10.1038/bjc.2017.398
[311]
Lineweaver, C.H., Bussey, K.J., Blackburn, A.C. and Davies, P.C.W. (2021) Cancer Progression as a Sequence of Atavistic Reversions. BioEssays,43, Article ID: 2000305. https://doi.org/10.1002/bies.202000305
[312]
Alfarouk, K.O., Shayoub, M.E.A., Muddathir, A.K., Elhassan, G.O. and Bashir, A.H.H. (2011) Evolution of Tumour Metabolism Might Reflect Carcinogenesis as a Reverse Evolution Process (Dismantling of Multicellularity). Cancers, 3, 3002-3017. https://doi.org/10.3390/cancers3033002
[313]
Szentgyorgyi, A. (1978) The Living State and Cancer. Marcel Dekker Inc., New York.
[314]
Jezequel, P. and Campone, M. (2018) Comment on “How the Evolution of Multicellularity Set the Stage for Cancer”. British Journal of Cancer, 119, 133-134. https://doi.org/10.1038/s41416-018-0091-0
[315]
Pavlides, S., Whitaker-Menezes, D., Castello-Cros, R., Flomenberg, N., Witkiewicz, A.K., Frank, P.G., Casimiro, M.C., Wang, C., Fortina, P., Addya, S., Pestell, R.G., Martinez-Outschoorn, U.E., Sotgia, F. and Lisanti, M.P. (2009) The Reverse Warburg Effect: Aerobic Glycolysis in Cancer Associated Fibroblasts and the Tumor Stroma. Cell Cycle, 8, 3984-4001. https://doi.org/10.4161/cc.8.23.10238
[316]
Wilde, L., Roche, M., Domingo-Vidal, M., Tanson, K., Philp, N., Curry, J. and Martinez-Outschoorn, U. (2017) Metabolic Coupling and the Reverse Warburg Effect in Cancer: Implications for Novel Biomarker and Anticancer Agent Development. Seminars in Oncology, 44, 198-203. https://doi.org/10.1053/j.seminoncol.2017.10.004
[317]
Folkman, J. (1971) Tumor Angiogenesis: Therapeutic Implications. New England Journal of Medicine, 285, 1182-1186. https://doi.org/10.1056/NEJM197111182852108
[318]
Folkman, J. (1984) Angiogenesis. In: Jaffe, E.A., Ed., Biology of Endothelial Cells, Nijhoff, Boston, 412-428. https://doi.org/10.1007/978-1-4613-2825-4_42
[319]
Kozlov, A.P. (2022) Mammalian Tumor-Like Organs. 2. Mammalian Adipose Has Many Tumor Features and Obesity Is a Tumor-Like Process. Infectious Agents and Cancer, 17, Article No. 15. https://doi.org/10.1186/s13027-022-00423-5
[320]
Huang, L., Holtzinger, A., Jagan, I., BeGora, M., Lohse, I., Ngai, N., Nostro, C., Wang, R., Muthuswamy, L.B., Crawford, H.C., et al. (2015) Ductal Pancreatic Cancer Modeling and Drug Screening Using Human Pluripotent Stem Cell-and Patient-Derived Tumor Organoids. Nature Medicine, 21, 1364-1371. https://doi.org/10.1038/nm.3973
[321]
Bloch, N. and Harel, D. (2016) The Tumor as an Organ: Comprehensive Spatial and Temporal Modeling of the Tumor and Its Microenvironment. BMC Bioinformatics, 17, Article No. 317. https://doi.org/10.1186/s12859-016-1168-5
[322]
Egeblad, M., Nakasone, E.S. and Werb, Z. (2010) Tumors as Organs: Complex Tissues That Interface with the Entire Organism. Developmental Cell, 18, 884-901. https://doi.org/10.1016/j.devcel.2010.05.012
[323]
Slominski, R.M., Raman, C., Chen, J.Y. and Slominskyi, A.T. (2023) How Cancer Hijacks the Body’s Homeostasis through the Neuroendocrine System. Trends in Neurosciences, 46, 263-275. https://doi.org/10.1016/j.tins.2023.01.003
[324]
Minnaar, C.A., Szasz, A., Lee, S.Y., Szigeti, Gy.P, Szasz, A.M. and Mathe, D. (2022) Supportive and Palliative Care in Cancer Therapies—Path from Tumor-Driven Therapies to Patient-Driven Ones. International Journal of Clinical Medicine, 13, 287-359. https://doi.org/10.4236/ijcm.2022.137024
[325]
Zhang, J., Späth, S.S., Marjani, S.L., Zhang, W. and Pan, X. (2018) Characterization of Cancer Genomic Heterogeneity by Next-Generation Sequencing Advances Precision Medicine in Cancer Treatment. Precision Clinical Medicine, 1, 29-48. https://doi.org/10.1093/pcmedi/pby007
[326]
Sinha, S., Li, X. and Thirumalai, D. (2022) Statistical Mechanical Theory for Spatio-Temporal Evolution of Intra-Tumor Heterogeneity in Cancers: Analysis of Multiregion Sequencing Data. https://doi.org/10.1101/2022.02.19.481164
[327]
Lee, S.-Y., Lorant, G., Grand, L. and Szasz, A.M. (2023) The Clinical Validation of Modulated Electro-Hyperthermia (MEHT). Cancers, 15, Article No. 4569. https://doi.org/10.3390/cancers15184569
[328]
Bosch, F.X., Gill, P.G., Hamilton, C.R., Hossfeld, D.K., Sherman, C.D. and Love, R.R. (2013) Manual of Clinical Oncology. Springer Verlag, Berlin, 602 p.
[329]
King, R.J.B. and Robins, M.W. (2016) Cancer Biology. Benjamin Cummings Publ., San Francisco.
[330]
Tannock, I.F., Hill, R.P., Bristow, R.G. and Harrington, L. (2013) The Basic Science of Oncology. McGraw-Hill, London.
[331]
Fisher, J.C. (1958) Multiple Mutation Theory of Carcionogenesis. Nature, 181, 651-652. https://doi.org/10.1038/181651b0
[332]
Muller, H.J. (1951) Radiation Damage to the Genetic Material. Science Progress, 7, 93-165.
[333]
Suther, J.V. and Bailar III, J.C. (1984) The Multihit Model of Carcinogenesis: Etiologic Implications for Colon Cancer. Journal of Chronic Diseases, 37, 465-480. https://doi.org/10.1016/0021-9681(84)90030-4
[334]
Weinberg, R.A. (2014) Coming Full Circle—From Endless Complexity to Simplicity and Back Again. Cell, 157, 267-271. https://doi.org/10.1016/j.cell.2014.03.004
[335]
Fisher, J.C. and Hollomon, J.H. (1951) A Hypothesis for the Origin of Cancer Foci. Cancer, 4, 916-918. https://doi.org/10.1002/1097-0142(195109)4:5<916::AID-CNCR2820040504>3.0.CO;2-7
[336]
Martínez-Jiménez, F., Muinos, F., Sentis, I., Deu-Pons, J., Reyes-Salazar, I., et al. (2020) A Compendium of Mutational Cancer Driver Genes. Nature Reviews Cancer, 20, 555-572. https://doi.org/10.1038/s41568-020-0290-x
[337]
Peto, R. (2016) Epidemiology, Multistage Models, and Short-Term Mutagenicity Tests. International Journal of Epidemiology, 45, 621-637. https://doi.org/10.1093/ije/dyv199
[338]
Peto, R., Darby, S., Deo, H., Silcocks, P., Whitley, E. and Doll, R. (2000) Smoking, Smoking Cessation, and Lung Cancer in the UK since 1950, Combination of National Statistics with Two Case-Control Studies. British Medical Journal, 321, 323-329. https://doi.org/10.1136/bmj.321.7257.323
[339]
Beckman, R.A. and Loeb, L.A. (2005) Genetic Instability in Cancer: Theory and Experiment. Seminars in Cancer Biology, 15, 423-435. https://doi.org/10.1016/j.semcancer.2005.06.007
[340]
Jemal, A., Tiwari, R.C., Murray, T., Ghafoor, A., Samuels, A., Ward, E., et al. (2004) Cancer Statistics. CA: Cancer Journal for Clinicians, 54, 8-29. https://doi.org/10.3322/canjclin.54.1.8
[341]
Avgerinos, D.V. and Bjornsson, J. (2001) Malignant Neoplasms: Discordance between Clinical Diagnoses and Autopsy Findings in 3,118 Cases. APMIS Journal of Pathology,Microbiology and Immunology, 109, 774-780. https://doi.org/10.1034/j.1600-0463.2001.d01-145.x
[342]
Folkman, J. and Kalluri, R. (2004) Cancer without Disease. Nature; 427, 787. https://doi.org/10.1038/427787a
[343]
Vineis, P. and Berwick, M. (2006) The Population Dynamics of Cancer: A Darwinian Perspective. International Journal of Epidemiology, 35, 1151-1159. https://doi.org/10.1093/ije/dyl185
[344]
Breivik, J. (2016) Reframing the “Cancer Moonshot”: How Experts and Non-Experts Interpret the Problem of Cancer. EMBO Reports,17, 1685-1687. https://doi.org/10.15252/embr.201643467
[345]
Meza, R., Jeon, J., Moolgavkar, S.H. and Luebeck, E.G. (2008) Age-Specific Incidence of Cancer: Phases, Transitions, and Biological Implications. Proceedings of the National Academy of Sciences in the United States of America,105, 16284-16289. https://doi.org/10.1073/pnas.0801151105
[346]
Dunstan, R. (1981) A Note on the “Sixth Power Law” of Carcinogenesis. Mathematical Biosciences,58, 185-188. https://doi.org/10.1016/0025-5564(82)90072-4
[347]
Armitage, P. and Doll, R. (1961) Stochasitc Models for Carcinogenesis. London School of Hygene and Tropical Medicine, London.
[348]
Whittemore, A. and Keller, J.B. (1978) Quantitative Theories of Carcinogenesis. SIAM Review, 20, 1-30. https://doi.org/10.1137/1020002
[349]
Armitrage, P. and Doll, R. (1954) The Age Distribution of Cancer and a Multi-Stage Theory of Carcinogenesis. British Journal of Cancer, 8, 1-12. https://doi.org/10.1038/bjc.1954.1
[350]
Lichtenstein, A.V. (2014) Cancer Research: A Hurdle Race. Biochemistry, 79, 385-390. https://doi.org/10.1134/S0006297914050010
[351]
Lichtenstein, A.V. (2017) Cancer: Bad Luck or Punishment? Biochemistry, 82, 75-80. https://doi.org/10.1134/S0006297917010084
[352]
Tomasetti, C. and Vogelstein, B. (2015) Variation in Cancer Risk among Tissues Can Be Explained by the Number of Stem Cell Divisions. Science, 347, 78-81. https://doi.org/10.1126/science.1260825
[353]
Wu, S., Powers, S., Zhu, W. and Hannun, Y.A. (2015) Substantial Contribution of Extrinsic Risk Factors to Cancer Development. Nature, 529, 43-47. https://doi.org/10.1038/nature16166
[354]
Raff, M.C. (1992) Social Controls on Cell Survival and Death. Nature, 356, 397-400. https://doi.org/10.1038/356397a0
[355]
Nordling, C.O. (1953) A New Theory on the Cancer-Inducing Mechanism. British Journal of Cancer, 7, 68-72. https://doi.org/10.1038/bjc.1953.8
[356]
Szasz, A. (2024) Peto’s “Paradox” and Six Degrees of Cancer Prevalence. Cells, 13, Article No. 197. https://doi.org/10.3390/cells13020197
[357]
Lichtenstein, A.V. (2005) On Evolutionary Origin of Cancer. Cancer Cell International, 5, Article No. 5. https://doi.org/10.1186/1475-2867-5-5
[358]
Hummert, S., Bohl, K., Basanta, D., Deutsch, A., Werner, S., Theissen, G., Schroeter, A. and Schuster, S. (2014) Evolutionary Game Theory: Cells as Players. Molecular Biosystems, 10, 3044-3065. https://doi.org/10.1039/C3MB70602H
[359]
Basanta, D., Simon, M., Hatzikirou, H. and Deutsch, A. (2008) Evolutionary Game Theory Elucidates the Role of Glycolysis in Glioma Progression and Invasion. Cell Proliferation,41, 980-987. https://doi.org/10.1111/j.1365-2184.2008.00563.x
[360]
Bukkuri, A. and Brown, J.S. (2021) Evolutionary Game Theory: Darwinian Dynamics and the G Function Approach. Games, 12, Article No. 72. https://doi.org/10.3390/g12040072
[361]
Wölfl, B., Te Rietmole, H., Salvioli, M., Kaznatcheev, A., Thuijsman, F., Brown, J.S., Burgering, B. and Staňková, K. (2022) The Contribution of Evolutionary Game Theory to Understanding and Treating Cancer. Dynamic Games and Applications, 12, 313-342. https://doi.org/10.1007/s13235-021-00397-w
[362]
Laruelle, A., Rocha, A., Manini, C., López, J.I. and Inarra, E. (2023) Effects of Heterogeneity on Cancer: A Game Theory Perspective. Bulletin of Mathematical Biology, 85, Article No. 72. https://doi.org/10.1007/s11538-023-01178-9
[363]
Gatenby, R.A., Gawlinski, E.T., Gmitro, A.F., Kaylor, B. and Gillies, R.J. (2006) Acid-Mediated Tumor Invasion: A Multidisciplinary Study. Cancer Research, 66, 5216-5223. https://doi.org/10.1158/0008-5472.CAN-05-4193
[364]
Kareva, I. (2011) Prisoner’s Dilemma in Cancer Metabolism. PLOS ONE, 6, e28576, 1-9. https://doi.org/10.1371/journal.pone.0028576
[365]
Archetti, M. and Pienta, K.J. (2019) Cooperation among Cancer Cells: Applying Game Theory to Cancer. Nature Reviews. Cancer,19, 110-117. https://doi.org/10.1038/s41568-018-0083-7
[366]
Merlo, L.M., Pepper, J.W., Reid, B.J. and Maley, C.C. (2006) Cancer as an Evolutionary and Ecological Process. Nature Reviews. Cancer,6, 924-935. https://doi.org/10.1038/nrc2013
[367]
Marsh, D. and Zori, R. (2002) Genetic Insights into Familial Cancers—Update and Recent Discoveries. Cancer Letters,181, 125-164. https://doi.org/10.1016/S0304-3835(02)00023-X
Feinberg, A.P. and Tycko, B. (2004) The History of Cancer Epigenetics. Nature Reviews. Cancer,4, 143-153. https://doi.org/10.1038/nrc1279
[370]
Kinzler, K.W. and Vogelstein, B. (1997) Cancer-Susceptibility Genes. Gatekeepers and Caretakers. Nature, 386, 761-763. https://doi.org/10.1038/386761a0
[371]
Cahill, D.P., Kinzler, K.W., Vogelstein, B. and Lengauer, C. (1999) Genetic Instability and Darwinian Selection in Tumours. Trends in Cell Biology, 9, M57-M60. https://doi.org/10.1016/S0962-8924(99)01661-X
[372]
Khong, H.T. and Restifo, N.P. (2002) Natural Selection of Tumor Variants in the Generation of “Tumor Escape” Phenotypes. Nature Immunology,3, 999-1005. https://doi.org/10.1038/ni1102-999
[373]
McKenzie, G.J., Lee, P.L., Lombardo, M.J., Hastings, P.J. and Rosenberg, S.M. (2001) SOS Mutator DNA Polymerase IV Functions in Adaptive Mutation and Not Adaptive Amplification. Molecular Cell, 7, 571-579. https://doi.org/10.1016/S1097-2765(01)00204-0
[374]
Breivik, J. and Gaudernack, G. (2004) Resolving the Evolutionary Paradox of Genetic Instability: A Cost-Benefit Analysis of DNA Repair in Changing Environments. FEBS Letters, 563, 7-12. https://doi.org/10.1016/S0014-5793(04)00282-0
[375]
Sniegowski, P.D., Gerrish, P.J., Johnson, T. and Shaver, A. (2000) The Evolution of Mutation Rates: Separating Causes from Consequences. Bioessays, 22, 1057-1066. https://doi.org/10.1002/1521-1878(200012)22:12<1057::AID-BIES3>3.0.CO;2-W
[376]
Wilke, C.O. and Adami, C. (2003) Evolution of Mutational Robustness. Mutation Research, 522, 3-11. https://doi.org/10.1016/S0027-5107(02)00307-X
[377]
Meadows, A.T. (2001) Second Tumours. European Journal of Cancer, 37, 2074-2079. https://doi.org/10.1016/S0959-8049(01)00264-7
[378]
Rodin, S.N. and Rodin, A.S. (2000) Human Lung Cancer and P53, the Interplay between Mutagenesis and Selection. Proceedings of the National Academy of Science of the United States of America, 97, 12244-12249. https://doi.org/10.1073/pnas.180320897
[379]
Breivik, J. (2001) Don’t Stop for Repairs in a War Zone: Darwinian Evolution Unites Genes and Environment in Cancer Development. Proceedings of the National Academy of Sciences of the United States of America, 98, 5379-5381. https://doi.org/10.1073/pnas.101137698
[380]
Nowak, M.A., Komarova, N.L., Sengupta, A., Jallepalli, P.V., Shih, I.M., Vogelstein, B. and Lengauer, C. (2002) The Role of Chromosomal Instability in Tumor Initiation. Proceedings of the National Academy of Science of the United States of America, 99, 16226-16231. https://doi.org/10.1073/pnas.202617399
[381]
Sundaram, G.M., Quah, S. and Sampath, P. (2018) Cancer: The Dark Side of Wound Healing. The FEBS Journal, 285, 4516-4534. https://doi.org/10.1111/febs.14586
[382]
Schafer, M. and Werner, S. (2008) Cancer as an Overhealing Wound: An Old Hypothesis Revisited. Nature Reviews. Molecular Cell Biology,9, 628-638. https://doi.org/10.1038/nrm2455
[383]
Dvorak, H.F. (2015) Tumors: Wounds That Do Not Heal—Redux. Cancer Immunology Research, 3, 1-11. https://doi.org/10.1158/2326-6066.CIR-14-0209
[384]
Gionzalez, H., Hagerling, C. and Werb, Z. (2018) Roles of the Immune System in Cancer: From Tumor Initiation to Metastatic Progression. Genes and Development, 32, 1267-1284. https://doi.org/10.1101/gad.314617.118
[385]
Feng, Y., Santoriello, C., Mione, M., Hurlstone, A. and Martin, P. (2010) Live Imaging of Innate Immune Cell Sensing of Transformed Cells in Zebrafish Larvae: Parallels between Tumor Initiation and Wound Inflammation. PLoS Biology,8, e1000562. https://doi.org/10.1371/journal.pbio.1000562
[386]
Lineweaver, C.H., Davies, P.C.W. and Vincent, M.D. (2014) Targeting Cancer’s Weaknesses (Not Its Strengths): Therapeutic Strategies Suggested by the Atavistic Model. Bioessays, 36, 827-835. https://doi.org/10.1002/bies.201400070
[387]
Cloutier, M. and Wang, E. (2011) Dynamic Modeling and Analysis of Cancer Cellular Network Motifs. Integrative Biology (Camb), 3, 724-732. https://doi.org/10.1039/c0ib00145g
[388]
Andocs, G., Rehman, M.U., Zhao, Q.-L., Tabuchi, Y., Kanamori, M. and Kondo, T. (2016) Comparison of Biological Effects of Modulated Electro-Hyperthermia and Conventional Heat Treatment in Human Lymphoma U937 Cell. Cell Death Discovery (Nature Publishing Group), 2, Article No. 16039. https://doi.org/10.1038/cddiscovery.2016.39
[389]
Szasz, A. and Szasz, O. (2020) Ch. 17. Time-Fractal Modulation of Modulated Electro-Hyperthermia (MEHT). In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars, Newcastle upon Tyne, 377-415. https://www.cambridgescholars.com/challenges-and-solutions-of-oncological-hyperthermia
[390]
Szasz, A. (2022) Time-Fractal Modulation-Possible Modulation Effects in Human Therapy. Open Journal of Biophysics, 12, 38-87. https://doi.org/10.4236/ojbiphy.2022.121003
[391]
Papp, E., Vancsik, T., Kiss, E. and Szasz, O. (2017) Energy Absorption by the Membrane Rafts in the Modulated Electro-Hyperthermia (MEHT). Open Journal of Biophysics, 7, 216-229. https://doi.org/10.4236/ojbiphy.2017.74016
[392]
Szasz, A. (2022) Heterogeneous Heat Absorption Is Complementary to Radiotherapy. Cancers, 14, Article No. 901. https://doi.org/10.3390/cancers14040901
[393]
Lee, S.Y. and Szasz, A. (2022) Immunogenic Effect of Modulated Electro-Hyperthermia (MEHT) in Solid Tumors. In: Interdisciplinary Cancer Research, Springer, Cham, 1-28. https://doi.org/10.1007/16833_2022_74
[394]
Kim, J.-K., Prasad, B. and Kim, S. (2017) Temperature Mapping and Thermal Dose Calculation in Combined Radiation Therapy and 13.56 MHz Radiofrequency Hyperthermia for Tumor Treatment. Proceedings SPIE 10047, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVI, Volume 10047, Article ID: 1004718. https://doi.org/10.1117/12.2253163
[395]
Andocs, G., Meggyeshazi, N., Balogh, L., et al. (2014) Upregulation of Heat Shock Proteins and the Promotion of Damage-Associated Molecular Pattern Signals in a Colorectal Cancer Model by Modulated Electrohyperthermia. Cell Stress and Chaperones,20, 37-46. https://doi.org/10.1007/s12192-014-0523-6
[396]
Krenacs, T., Meggyeshazi, N., et al. (2020) Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. International Journal of Molecular Sciences, 21, Article No. 6270. https://doi.org/10.3390/ijms21176270
[397]
Vancsik, T., Kovago, Cs., Kiss, E., et al. (2018) Modulated Electro-Hyperthermia Induced Loco-Regional and Systemic Tumor Destruction in Colorectal Cancer Allografts. Journal of Cancer, 9, 41-53. https://doi.org/10.7150/jca.21520
[398]
Minnaar, C.A., Maposa, I., Kotzen, J.A. and Baeyens, A. (2022) Effects of Modulated Electro-Hyperthermia (MEHT) on Two and Three Year Survival of Locally Advanced Cervical Cancer Patients. Cancers, 14, Article No. 656. https://doi.org/10.3390/cancers14030656
[399]
Minnaar, C.A., Kotzen, J.A., Naidoo, T., et al. (2020) Analysis of the Effects of MEHT on the Treatment-Related Toxicity and Quality of Life of HIV-Positive Cervical Cancer Patients. International Journal of Hyperthermia, 37, 263-272. https://doi.org/10.1080/02656736.2020.1737253
[400]
Ou, J., Zhu, X., Lu, Y., et al. (2017) The Safety and Pharmacokinetics of High Dose Intravenous Ascorbic Acid Synergy with Modulated Electrohyperthermia in Chinese Patients with Stage III-IV Non-Small Cell Lung Cancer. European Journal of Pharmaceutical Sciences, 109, 412-418. https://doi.org/10.1016/j.ejps.2017.08.011
[401]
Minnaar, C.A., Kotzen, J.A., Ayeni, O.A., et al. (2020) Potentiation of the Abscopal Effect by Modulated Electro-Hyperthermia in Locally Advanced Cervical Cancer Patients. Frontiers in Oncology, 10, Article No. 376. https://doi.org/10.3389/fonc.2020.00376
[402]
Szasz, A.M., Minnaar, C.A., Szentmartoni, Gy., et al. (2019) Review of the Clinical Evidences of Modulated Electro-Hyperthermia (MEHT) Method: An Update for the Practicing Oncologist. Frontiers in Oncology, 9, Article No. 1012. https://doi.org/10.3389/fonc.2019.01012
[403]
Chi, M.-S., Mehta, M.P., Yang, K.-L., et al. (2020) Putative Abscopal Effect in Three Patients Treated by Combined Radiotherapy and Modulated Electrohyperthermia. Frontiers in Oncology, 10, Article No. 254. https://doi.org/10.3389/fonc.2020.00254
[404]
Ou, J., Zhu, X., Chen, P., et al. (2020) A Randomized Phase II Trial of Best Supportive Care with or without Hyperthermia and Vitamin C for Heavily Pretreated, Advanced, Refractory Non-Small-Cell Lung Cancer. Journal of Advanced Research, 24, 175-182. https://doi.org/10.1016/j.jare.2020.03.004
[405]
Minnaar, C.A., Szigeti, G.P., Szasz, A.M. and Kotzen, J.A. (2022) Review on the Use of Modulated Electro-Hyperthermia as a Stand-Alone Therapy in a Palliative Setting: Potential for Further Research? Journal of Cancer Therapy, 13, 362-377. https://doi.org/10.4236/jct.2022.136032