全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于面部表情的抑郁症识别和诊断研究
Research on Depression Recognition and Diagnosis Based on Facial Expressions

DOI: 10.12677/ass.2024.134297, PP. 257-264

Keywords: 面部表情,抑郁症,人工智能,识别诊断
Facial Expressions
, Depression, Artificial Intelligence, Recognition and Diagnosis

Full-Text   Cite this paper   Add to My Lib

Abstract:

抑郁症是一种常见但会影响患者生活质量的精神疾病,它常表现为面部表情和行为上的变化。然而,目前抑郁症的诊断主要依靠患者自我报告和医师主观判断,这种方式存在较大局限性。面部表情可以传递丰富的非语言信息,在抑郁症的识别和评估中具有重要作用,人工智能在图像特征提取和分类等方面有独特优势,可为研究面部表情与抑郁症之间的关系提供有力支撑。该文基于人工智能技术的抑郁症患者面部特征研究,并对未来研究方向进行展望,以期为日后抑郁症临床智能化诊断和跟踪提供参考。
Depression is a prevalent mental illness that significantly impacts patients’ quality of life, often manifesting through alterations in facial expressions and behavior. However, the current diagnostic approach for depression predominantly relies on patient self-reporting and subjective assessments by physicians, presenting notable limitations. Facial expressions are capable of conveying nuanced non-verbal cues and thus hold considerable promise in the detection and evaluation of depression. Leveraging artificial intelligence, with its distinct capabilities in image feature extraction and classification, offers potent tools for investigating the correlation between facial expressions and depression. This study employs artificial intelligence technology to examine the facial characteristics of individuals with depression, and anticipates future research avenues, aiming to furnish insights for the advancement of clinically intelligent diagnosis and monitoring of depression.

References

[1]  李欣, 范青. 机器学习在抑郁症患者面部特征研究中的应用进展[J]. 上海交通大学学报(医学版), 2022, 42(1): 124-129.
[2]  Levav, I. and Rutz, W. (2002) The WHO World Health Report 2001 New Understanding—New Hope. The Israel Journal of Psychiatry and Related Sciences, 39, 50-56.
[3]  He, L., Niu, M., Tiwari, P., et al. (2022) Deep Learning for Depression Recognition with Audiovisual Cues: A Review. Information Fusion, 80, 56-86.
https://doi.org/10.1016/j.inffus.2021.10.012
[4]  Lin, Y.P., Wang, C.H., Jung, T.-P., et al. (2010) EEG-Based Emotion Recognition in Music Listening. IEEE Transactions on Biomedical Engineering, 57, 1798-1806.
https://doi.org/10.1109/TBME.2010.2048568
[5]  Petrantonakis, P.C. and Hadjileontiadis, L.J. (2010) Emotion Recognition from EEG Using Higher Order Crossings. IEEE Transactions on Information Technology in Biomedicine, 14, 186-197.
https://doi.org/10.1109/TITB.2009.2034649
[6]  Harvey, P.O., Fossati, P., Pochon, J.B., et al. (2005) Cognitive Control and Brain Resources in Major Depression: An FMRI Study Using the n-Back Task. NeuroImage, 26, 860-869.
https://doi.org/10.1016/j.neuroimage.2005.02.048
[7]  Bora, E., Fornito, A., Pantelis, C. and Yücel, M. (2012) Gray Matter Abnormalities in Major Depressive Disorder: A Meta-Analysis of Voxel Based Morphometry Studies. Journal of Affective Disorders, 138, 9-18.
https://doi.org/10.1016/j.jad.2011.03.049
[8]  Zunszain, P.A., Anacker, C., Cattaneo, A., et al. (2011) Glucocorticoids, Cytokines and Brain Abnormalities in Depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35, 722-729.
https://doi.org/10.1016/j.pnpbp.2010.04.011
[9]  Hage, M.P. and Azar, S.T. (2012) The Link between Thyroid Function and Depression. Journal of Thyroid Research, 2012, Article ID: 590648.
https://doi.org/10.1155/2012/590648
[10]  Alghowinem, S., Goecke, R., Wagner, M., et al. (2013) Eye Movement Analysis for Depression Detection. Proceedings of the 20th IEEE International Conference on Image Processing (ICIP), Melbourne, 15-18 September 2013, 4220-4224.
https://doi.org/10.1109/ICIP.2013.6738869
[11]  Michalak, J., Troje, N.F., Fischer, J., et al. (2009) Embodiment of Sadness and Depression-Gait Patterns Associated with Dysphoric Mood. Psychosomatic Medicine, 71, 580-587.
https://doi.org/10.1097/PSY.0b013e3181a2515c
[12]  Cummins, N., Scherer, S., Krajewski, J., et al. (2015) A Review of Depression and Suicide Risk Assessment Using Speech Analysis. Speech Communication, 71, 10-49.
https://doi.org/10.1016/j.specom.2015.03.004
[13]  Pampouchidou, A., Simos, P.G., Marias, K., et al. (2019) Automatic Assessment of Depression Based on Visual Cues: A Systematic Review. IEEE Transactions on Affective Computing, 10, 445-470.
https://doi.org/10.1109/TAFFC.2017.2724035
[14]  Chollet, F. (2017) Xception: Deep Learning with Depthwise Separable Convolutions. Proceedings of the 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 1800-1807.
https://doi.org/10.1109/CVPR.2017.195
[15]  Mollahosseini, A., Chan, D., Mahoor, M.H., et al. (2016) Going Deeper in Facial Expression Recognition Using Deep Neural Networks. Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, 7-10 March 2016, 1-10.
https://doi.org/10.1109/WACV.2016.7477450
[16]  Zhu, T. (2021) Identifying Psychological Symptoms Based on Facial Movements. International Journal of Psychophysiology, 168, S58.
https://doi.org/10.1016/j.ijpsycho.2021.07.175
[17]  Ekman, P. (1993) Facial Expression and Emotion. American Psychologist, 48, 384-392.
https://doi.org/10.1037/0003-066X.48.4.384
[18]  Ekman, P. (1971) Universals and Cultural Differences in Facial Expressions of Emotion. Nebraska Symposium on Motivation, 19, 207-283.
[19]  Ekman, P. (1989) The Argument and Evidence about Universals in Facial Expressions of Emotion. In: Wagner, H.L., Ed., Handbook of Social Psychophysiology, John Wiley & Sons, Oxford, 143-164.
[20]  Ekman, P. and Friesen, W.V. (1971) Constants across Cultures in the Face and Emotion. Journal of Personality and Social Psychology, 17, 124-129.
https://doi.org/10.1037/h0030377
[21]  Izard, C.E. (1994) Innate and Universal Facial Expressions: Evidence from Developmental and Cross-Cultural Research. Psychological Bulletin, 115, 288-299.
https://doi.org/10.1037/0033-2909.115.2.288
[22]  Strack, F., Martin, L.L. and Stepper, S. (1988) Inhibiting and Facilitating Conditions of the Human Smile: A Nonobtrusive Test of the Facial Feedback Hypothesis. Journal of Personality and Social Psychology, 54, 768-777.
https://doi.org/10.1037/0022-3514.54.5.768
[23]  Gopnik, A. and Wellman, H.M. (1992) Why the Child’s Theory of Mind Really Is a Theory. Mind & Language, 7, 145-171.
https://doi.org/10.1111/j.1468-0017.1992.tb00202.x
[24]  Calder, A.J., Burton, A.M., Miller, P., et al. (2001) A Principal Component Analysis of Facial Expressions. Vision Research, 41, 1179-1208.
https://doi.org/10.1016/S0042-6989(01)00002-5
[25]  Fairbanks, L.A., Mcguire, M.T. and Harris, C.J. (1982) Nonverbal Interaction of Patients and Therapists during Psychiatric Interviews. Journal of Abnormal Psychology, 91, 109-119.
https://doi.org/10.1037/0021-843X.91.2.109
[26]  Scherer, S., Stratou, G., Lucas, G., et al. (2014) Automatic Audiovisual Behavior Descriptors for Psychological Disorder Analysis. Image and Vision Computing, 32, 648-658.
https://doi.org/10.1016/j.imavis.2014.06.001
[27]  季建林, 张虹复. 抑郁症躯体症状及其相关因素分析[J]. 中国心理卫生杂志, 200, 162(9): 605-608.
[28]  Trivedi, M.H. (2006) Major Depressive Disorder: Remission of Associated Symptoms. Journal of Clinical Psychiatry, 67, 27-32.
[29]  Stuhrmann, A., Suslow, T. and Dannlowski, U. (2011) Facial Emotion Processing in Major Depression: A Systematic Review of Neuroimaging Findings. Biology of Mood & Anxiety Disorders, 1, Article No. 10.
https://doi.org/10.1186/2045-5380-1-10
[30]  Rottenberg, J., Gross, J.J. and Gotlib, I.H. (2005) Emotion Context Insensitivity in Major Depressive Disorder. Journal of Abnormal Psychology, 114, 627-639.
https://doi.org/10.1037/0021-843X.114.4.627
[31]  Bylsma, L.M., Morris, B.H. and Rottenberg, J. (2008) A Meta-Analysis of Emotional Reactivity in Major Depressive Disorder. Clinical Psychology Review, 28, 676-691.
https://doi.org/10.1016/j.cpr.2007.10.001
[32]  Wang, P., Barrett, F., Martin, E., et al. (2008) Automated Video-Based Facial Expression Analysis of Neuropsychiatric Disorders. Journal of Neuroscience Methods, 168, 224-238.
https://doi.org/10.1016/j.jneumeth.2007.09.030
[33]  Wen, L., Li, X., Guo, G. and Zhu, Y. (2015) Automated Depression Diagnosis Based on Facial Dynamic Analysis and Sparse Coding. IEEE Transactions on Information Forensics and Security, 10, 1432-1441.
https://doi.org/10.1109/TIFS.2015.2414392
[34]  Meng, H., Huang, D., Wang, H., et al. (2013) Depression Recognition Based on Dynamic Facial and Vocal Expression Features Using Partial Least Square Regression. Proceedings of the 3rd ACM International Workshop on Audio/Visual Emotion Challenge, Barcelona, 21 October 2013, 21-30.
https://doi.org/10.1145/2512530.2512532
[35]  Zhu, Y., Shang, Y., Shao, Z., et al. (2018) Automated Depression Diagnosis Based on Deep Networks to Encode Facial Appearance and Dynamics. IEEE Transactions on Affective Computing, 9, 578-584.
https://doi.org/10.1109/TAFFC.2017.2650899
[36]  Zhou, X., Jin, K., Shang, Y., et al. (2020) Visually Interpretable Representation Learning for Depression Recognition from Facial Images. IEEE Transactions on Affective Computing, 11, 542-552.
https://doi.org/10.1109/TAFFC.2018.2828819
[37]  Al Jazaery, M. and Guo, G. (2021) Video-Based Depression Level Analysis by Encoding Deep Spatiotemporal Features. IEEE Transactions on Affective Computing, 12, 262-268.
https://doi.org/10.1109/TAFFC.2018.2870884
[38]  Melo, W.C.D., Granger, E. and Hadid, A. (2019) Combining Global and Local Convolutional 3D Networks for Detecting Depression from Facial Expressions. Proceedings of the 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), Lille, 14-18 May 2019, 1-8.
[39]  Alghowinem, S., Goecke, R., Wagner, M., et al. (2018) Multimodal Depression Detection: Fusion Analysis of Paralinguistic, Head Pose and Eye Gaze Behaviors. IEEE Transactions on Affective Computing, 9, 478-490.
https://doi.org/10.1109/TAFFC.2016.2634527
[40]  Fang, J., Wang, T., Li, C., et al. (2019) Depression Prevalence in Postgraduate Students and Its Association with Gait Abnormality. IEEE Access, 7, 174425-174437.
https://doi.org/10.1109/ACCESS.2019.2957179
[41]  Gao, S., Calhoun, V.D. and Sui, J. (2018) Machine Learning in Major Depression: From Classification to Treatment Outcome Prediction. CNS Neuroscience & Therapeutics, 24, 1037-1052.
https://doi.org/10.1111/cns.13048

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133