|
垂直轴风力发电机力学性能研究综述
|
Abstract:
海上风电作为我国“十四五”规划的重要目标之一,垂直轴风力机(VAWT)在近海风场上有很大的优势。在目前众多学者的研究之中,为拉近VAWT与HAWT的差距,提升VAWT的性能,对VAWT的空气动力学研究很充分,但大型化VAWT的安全性和可靠性也成为备受关注的问题。本文从VAWT空气动力学和结构动力学两方面展开对VAWT力学性能研究的阐述,针对VAWT叶片结构动力学研究的不足提出了相应的观点。
Offshore wind power is one of the important goals of China’s 14th Five Year Plan, and vertical axis wind turbines (VAWT) have great advantages in offshore wind farms. In the current research of many scholars, in order to narrow the gap between VAWT and HAWT and improve the performance of VAWT, there is sufficient research on the aerodynamics of VAWT. However, the safety and reliability of large-scale VAWT have also become a highly concerned issue. This article elaborates on the mechanical performance research of VAWT from two aspects: aerodynamics and structural dynamics, and proposes corresponding views on the shortcomings of VAWT blade structural dynamics research.
[1] | Jiu, W., Marnoto, T., Mat, S., et al. (2015) Darrieus Vertical Axis Wind Turbine for Power Generation I: Assessment of Darrieus VAWT Configurations. Renewable Energy, 75, 50-67. https://doi.org/10.1016/j.renene.2014.09.038 |
[2] | 许国东, 叶杭冶, 解鸿斌. 风电机组技术现状及发展方向[J]. 中国工程科学, 2018, 20(3): 44-50. |
[3] | Tjiu, W., Marnoto, T., Mat, S., et al. (2015) Darrieus Vertical Axis Wind Turbine for Power Generation II: Challenges in HAWT and the Opportunity of Multi-Megawatt Darrieus VAWT Development. Renewable Energy, 75, 560-571. https://doi.org/10.1016/j.renene.2014.10.039 |
[4] | 徐辉. 海上风电推动能源转型的战略选择与实践思考[J]. 能源, 2020(12): 78-82. |
[5] | Trevo, J.P. (2005) Edward Golding’s Iinfluence on Wind Power. Wind Engineering, 29, 513-530. https://doi.org/10.1260/030952405776234553 |
[6] | Michael, B., Andrew, S. and Maurizio, C. (2014) Offshore Floating Vertical Axis Wind Turbines, Dynamics Modelling State of the Art. Part I: Aerodynamics. Renewable and Sustainable Energy Reviews, 39, 1214-1225. https://doi.org/10.1016/j.rser.2014.07.096 |
[7] | REN (2011) Renewables 2011: Global Status Report. Environmental Policy Collection. |
[8] | Global Wind Energy Council (2019) Global Wind Report 2018 Annual Market Update. https://www.energy.gov/eere/wind/2018-wind-market-reports |
[9] | Global Wind Energy Council (2020) Global Wind Report 2019 Annual Market Update. https://gwec.net/?s=Global Wind Report 2019 Annual Market Update |
[10] | Sayer, F., Buerkner, F., Buchholz, B., et al. (2013) Influence of a Wind Turbine Service Life on the Mechanical Properties of the Material and the Blade. Wind Energy, 16, 163-174. https://doi.org/10.1002/we.536 |
[11] | Hunter, P.C. (2009) Multi-Megawatt Vertical Axis Wind Turbine. Hamburg Offshore Wind Conference, Hamburg, |
[12] | 姚英学, 汤志鹏. 垂直轴风力机应用概况及其展望[J]. 现代制造工程, 2010(3): 136-139, 144. |
[13] | 杨益飞, 潘伟, 朱熀秋. 垂直轴风力发电机技术综述及研究进展[J]. 中国机械工程, 2013, 24(5): 703-709. |
[14] | Lam, H.F. and Peng, H.Y. (2016) Study of Wake Characteristics of a Vertical Axis Wind Turbine by Two-and Three-Dimensional Computational Fluid Dynamics Simulations. Renewable Energy, 90, 386-398. https://doi.org/10.1016/j.renene.2016.01.011 |
[15] | Rolin, V.F. and Porté-Agel, F. (2018) Experimental Investigation of Vertical-Axis Wind-Turbine Wakes in Boundary Layer Flow. Renewable Energy, 118, 1-13. https://doi.org/10.1016/j.renene.2017.10.105 |
[16] | Kadum, H., Friedman, S., Camp, E.H. and Cal, R.B. (2018) Development and Scaling of a Vertical Axis Wind Turbine Wake. Journal of Wind Engineering and Industrial Aerodynamics, 174, 303-311. https://doi.org/10.1016/j.jweia.2018.01.004 |
[17] | Almohammadi, K.M., Ingham, D.B., Ma, L. and Pourkashanian, M. (2015) Modeling Dynamic Stall of a Straight Blade Vertical Axis Wind Turbine. Journal of Fluids & Structures, 57, 144-158. https://doi.org/10.1016/j.jfluidstructs.2015.06.003 |
[18] | Wang, Q. and Zhao, Q. (2018) Rotor Airfoil Profile Optimization for Alleviating Dynamic Stall Characteristics. Aerospace Science and Technology, 72, 502-515. https://doi.org/10.1016/j.ast.2017.11.033 |
[19] | Jain, S. and Saha, U.K. (2020) On the Influence of Blade Thickness-to-Chord Ratio on Dynamic Stall Phenomenon in H-Type Darrieus Wind Rotors. Energy Conversion and Management, 218, Article ID: 113024. https://doi.org/10.1016/j.enconman.2020.113024 |
[20] | Sangwan, J. and Sengupta, T.K. (2017) Investigation of Compressibility Effects on Dynamic Stall of Pitching Airfoil. Physics of Fluids, 29, Article ID: 076104. https://doi.org/10.1063/1.4995457 |
[21] | Rezaeiha, A., Montazeri, H. and Blocken, B. (2018) Characterization of Aerodynamic Performance of Vertical Axis Wind Turbines: Impact of Operational Parameters. Energy Conversion and Management, 169, 45-77. https://doi.org/10.1016/j.enconman.2018.05.042 |
[22] | Xh, A., Ma, A., Psm, A., et al. (2020) Analysis of the Effect of Freestream Turbulence on Dynamic Stall of Wind Turbine Blades. International Journal of Heat and Fluid Flow, 85, Article ID: 108668. |
[23] | Pablo, O., Thorsten, S. and Luis, R. (2018) Effect of Blade Cambering on Dynamic Stall in View of Designing Vertical Axis Turbines. Journal of Fluids Engineering, 140, Article ID: 061104. https://doi.org/10.1115/1.4039235 |
[24] | Leknys, R.R., Arjomandi, M., Kelso, R.M., et al. (2019) Dynamic Stall Flow Structure and Forces on Symmetrical Airfoils at High Angles of Attack and Rotation Rates. Journal of Fluids Engineering, 141, Article ID: 051104. https://doi.org/10.1115/1.4041523 |
[25] | Hau, N.R., Lin, M., Ingham, D., et al. (2020) A Critical Analysis of the Stall Onset in Vertical Axis Wind Turbines. Journal of Wind Engineering and Industrial Aerodynamics, 204, Article ID: 104264. https://doi.org/10.1016/j.jweia.2020.104264 |
[26] | Brianhand Kelly, G. and Cashman, A. (2017) Numerical Simulation of a Vertical Axis Wind Turbine Airfoil Experiencing Dynamic Stall at High Reynolds Numbers. Computers & Fluids, 149, 12-30. https://doi.org/10.1016/j.compfluid.2017.02.021 |
[27] | Yen, J. and Ahmed, N.A. (2013) Enhancing Vertical Axis Wind Turbine by Dynamic Stall Control Using Synthetic Jets. Journal of Wind Engineering and Industrial Aerodynamics, 114, 12-17. https://doi.org/10.1016/j.jweia.2012.12.015 |
[28] | Zhu, H., Hao, W., Li, C., et al. (2020) Effect of Flow-Deflecting-Gap Blade on Aerodynamic Characteristic of Vertical Axis Wind Turbines. Renewable Energy, 158, 370-387. https://doi.org/10.1016/j.renene.2020.05.092 |
[29] | Tavernier, D.D., Ferreira, C., Viré, A., et al. (2021) Controlling Dynamic Stall Using Vortex Generators on a Wind Turbine Airfoil. Renewable Energy, 172, 1194-1211. |
[30] | Howell, R., Qin, N., Edwards, J. and Durrani, N. (2010) Wind Tunnel and Numerical Study of a Small Vertical Axis Wind Turbine. Renewable Energy, 35, 412-422. https://doi.org/10.1016/j.renene.2009.07.025 |
[31] | Danao, L.A., Eboibi, O. and Howell, R. (2013) An Experimental Investigation into the Influence of Unsteady Wind on the Performance of a Vertical Axis Wind Turbine. Applied Energy, 107, 403-411. https://doi.org/10.1016/j.apenergy.2013.02.012 |
[32] | Lee, Y.T. and Lim, H.C. (2015) Numerical Study of the Aerodynamic Performance of a 500W Darrieus-Type Vertical-Axis Wind Turbine. Renewable Energy, 83, 407-415. https://doi.org/10.1016/j.renene.2015.04.043 |
[33] | Subramanian, A., Arun, S., et al. (2017) Effect of Airfoil and Solidity on Performance of Small Scale Vertical Axis Wind Turbine Using Three Dimensional CFD Model. Energy, 133, 179-190. https://doi.org/10.1016/j.energy.2017.05.118 |
[34] | Elkhoury, M., Kiwata, T. and Aoun, E. (2015) Experimental and Numerical Investigation of a Three-Dimensional Vertical-Axis Wind Turbine with Variable-Pitch. Journal of Wind Engineering and Industrial Aerodynamics, 139, 111-123. https://doi.org/10.1016/j.jweia.2015.01.004 |
[35] | Rezaeiha, A., Kalkman, I. and Blocken, B. (2017) Effect of Pitch Angle on Power Performance and Aerodynamics of a Vertical Axis Wind Turbine. Applied Energy, 197, 132-150. https://doi.org/10.1016/j.apenergy.2017.03.128 |
[36] | Li, Y., Feng, F., Tian, W.Q., et al. (2011) Numerical Simulation on the Static Torque Performance of Vertical Axis Wind Turbine with Different Blade Airfoils. Applied Mechanics and Materials, 84-85, 702-705. https://doi.org/10.4028/www.scientific.net/AMM.84-85.702 |
[37] | Cao, H., Wu, X., Ye, H., et al. (2018) Optimization Research on Lift-Type Vertical Axis Wind Turbine Airfoil by CFD. Journal of Physics: Conference Series, 1064, Article ID: 012072. https://doi.org/10.1088/1742-6596/1064/1/012072 |
[38] | Jianyou, H., Chia-Ou, C. and Chien-Cheng, C. (2021) Analysis of Structural Vibrations of Vertical Axis Wind Turbine Blades via Hamilton’s Principle—Part 3: Pitch Angle and Equilibrium State. International Journal of Structural Stability and Dynamics, 21, Article ID: 2150070. https://doi.org/10.1142/S021945542150070X |
[39] | Saeid, B., Amin, S. and Nader, J. (2008) Forced Vibration Analysis of Flexible Euler-Bernoulli Beams with Geometrical Discontinuities. 2008 American Control Conference, Seattle, 11-13 June 2008, 4029-4034. |
[40] | Sun, X.J., Zhu, J.Y., Li, Z.J. and Sun, G.X. (2020) Rotation Improvement of Vertical Axis Wind Turbine by Offsetting Pitching Angles and Changing Blade Numbers. Energy, 215, Article ID: 119177. https://doi.org/10.1016/j.energy.2020.119177 |
[41] | Carne, T.G., Lauffer, J.P., Gomez, A.J., et al. (1987) Modal Testing the EOLE. SAND-87-1506. |
[42] | Huang, J.Y., Zhang, H., Zhou, C., Tang, Q.C. and Lin, J.X. (2023) Nonlinear Structural Vibration of Multi-Megawatt Vertical Axis Wind Turbine Blades-Part 1: Derivation of Motion Equations. International Journal of Structural Stability and Dynamics. https://doi.org/10.1142/S0219455424501359 |
[43] | Huang, J.Y., Chang, C.O. and Chang, C.C. (2020) Analysis of Structural Vibrations of Vertical Axis Wind Turbine Blades via Hamilton’S Principle—Part 2: Exact and Approximate Solutions. International Journal of Structural Stability and Dynamics, 20, Article ID: 2050099. https://doi.org/10.1142/S0219455420500996 |
[44] | Huang, J.Y., Chang, C.O. and Chang, C.C. (2020) Analysis of Structural Vibrations of Vertical Axis Wind Turbine Blades via Hamilton’S Principle—Part 1: General Formulation. International Journal of Structural Stability and Dynamics, 20, Article ID: 2050098. https://doi.org/10.1142/S0219455420500984 |
[45] | 田海姣, 王铁龙, 王颖. 垂直轴风力发电机发展概述[J]. 应用能源技术, 2006(11): 22-27. |
[46] | 田海姣, 高日, 王铁龙. 巨型垂直轴风力发电机组结构的动力特性分析[J]. 钢结构, 2007, 22(6): 38-41. |
[47] | 蒋周伟. H型垂直轴风力发电机风振特性与结构优化研究[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2012. |
[48] | Kim, H.H., Oh, Y. and Yoo, H.H. (2020) Simple Vibration Model for the Design of a Vertical Axis Wind Turbine. Journal of Mechanical Science and Technology, 34, 511-520. https://doi.org/10.1007/s12206-020-0101-z |
[49] | Luk, K.F., So, R.M.C., Leung, R.C, K., et al. (2004) Aerodynamic and Structural Resonance of an Elastic Airfoil Due to Oncoming Vortices. AIAA Journal, 42, 899-907. https://doi.org/10.2514/1.2246 |
[50] | Blevins, R.D. and Saunders, H. (1977) Flow-Induced Vibration. Van Nostrand Reinhold, New York. |
[51] | Sina, S. (2021) Aeroelastic Stability of Horizontal Axis Wind Turbine Blades. 7th Iran Wind Energy Conference (IWEC2021), Shahrood, 17-18 May 2021, 1-4. |
[52] | Kalles?e, B.S. and Hansen, M.H. (2009) Some Effects of Large Blade Deflections on Aeroelastic Stability. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, 5-8 January 2009. https://doi.org/10.2514/6.2009-839 |
[53] | Touraj, F. and Altan, K. (2016) Classical Aeroelastic Stability Analysis of Large Composite Wind Turbine Blades. 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, San Diego, 4-8 January 2016. https://doi.org/10.2514/6.2016-1959 |
[54] | Wanru, D., Yang, Y., Liqin, L., et al. (2020) Research on the Dynamical Responses of H-Type Floating VAWT Considering the Rigid-Flexible Coupling Effect. Journal of Sound and Vibration, 469, Article ID: 115162. https://doi.org/10.1016/j.jsv.2019.115162 |
[55] | Hodges, D.H. and Dowell, E.H. (1974) Nonlinear Equations of Motion for the Elastic Bending and Torsion of Twisted Nonuniform Rotor Blades. NASA TN D-7818. |
[56] | Wu, X.L., Jiao, Y.H. and Chen, Z.B. (2022) An Analytical Model of a Rotating Radial Cantilever Beam Considering the Coupling Between Bending, Stretching, and Torsion. Journal of Vibration and Acoustics, 144, Article ID: 021004. https://doi.org/10.1115/1.4051494 |
[57] | Li, L., Zhang, X. and Li, Y. (2016) Analysis of Coupled Vibration Characteristics of Wind Turbine Blade Based on Green’s Functions. Acta Mechanica Solida Sinica, 29, 620-630. https://doi.org/10.1016/S0894-9166(16)30332-9 |
[58] | Jun, W. and Branislav, T. (2021) Modal Analysis of a Rotating Pre-Twisted Beam Axially Loaded by an Internally Guided Tendon. Journal of Sound and Vibration, 498, Article ID: 115980. https://doi.org/10.1016/j.jsv.2021.115980 |
[59] | Hamed, F. and Alper, E. (2021) Three-Dimensional Nonlinear Extreme Vibrations of Cantilevers Based on a Geometrically Exact Model. Journal of Sound and Vibration, 510, Article ID: 116295. https://doi.org/10.1016/j.jsv.2021.116295 |
[60] | Zhou, Y.X., Zhang, Y.M. and Yao, G. (2020) Nonlinear Forced Vibration Analysis of a Rotating Three-Dimensional Tapered Cantilever Beam. Journal of Vibration and Control, 27. https://doi.org/10.1177/1077546320949716 |
[61] | Han, H.S., Liu, L. and Cao, D.Q. (2019) Dynamic Modeling for Rotating Composite Timoshenko Beam and Analysis on Its Bending-Torsion Coupled Vibration. Applied Mathematical Modelling, 78, 773-791. |
[62] | Jokar, H., Mahzoon, M. and Vatankhah, R. (2022) Nonlinear Dynamic Characteristics of Horizontal-Axis Wind Turbine Blades Including Pre-Twist. Ocean Engineering, 256, Article ID: 111441. https://doi.org/10.1016/j.oceaneng.2022.111441 |
[63] | Nayfeh, A.H. and Pai, P.F. (2004) Linear and Nonlinear Structural Mechanics. John Wiiley and Sons, New Jersey. https://doi.org/10.1002/9783527617562 |
[64] | Li, L., Li, Y.H., Liu, Q.K. and Lv, H.W. (2014) A Mathematical Model for Horizontal Axis Wind Turbine Blades. Applied Mathematical Modelling, 38, 2695-2715. https://doi.org/10.1016/j.apm.2013.10.068 |
[65] | Pai, P.F. and Nayfeh, A.H. (1990) Three-Dimensional Nonlinear Vibrations of Composite Beams—I. Equations of Motion. Nonlinear Dynamics, 1, 477-502. https://doi.org/10.1007/BF01856950 |