全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于数据驱动的一类具有信息效应的传染病模型研究
Research on a Class of Infectious Disease Model with Information Effects Based on Data Driven

DOI: 10.12677/orf.2024.142171, PP. 690-701

Keywords: 信息效应,动力学模型,Bootstrap抽样,极大似然估计,COVID-19,敏感性分析
Information Effect
, Dynamic Model, Bootstrap Sampling, Maximum Likelihood Estimation, COVID-19, Sensitivity Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文我们提出了一类具有信息效应的SSaEAIRD传染病动力学模型来揭示非药物干预措施对传染病传播的影响。首先,给出了模型的基本再生数,研究了无病平衡点的局部渐近稳定性;其次,基于我国COVID-19疫情传播的病例数据,利用bootstrap抽样、极大似然估计以及非线性最小二乘拟合对该模型的参数进行了估计;通过95%置信区间可以看出模型拟合的可靠性;最后,为了确定关键参数对疫情发展的影响,还进行了不确定性和敏感性分析。研究结果表明,加大信息宣传效应会使个人的行为发生改变,有意识的人群增多,对疾病的防护意识增强;还会降低感染者对无意识易感者的有效传染率,减少感染的人群,从而更好地控制疾病的传播。
In this paper, we propose a class of SSaEAIRD infectious disease dynamics models with information effects to reveal the impact of non pharmacological interventions on the spread of infectious diseases. Firstly, the basic reproduction number of the model is given, and the local asymptotic stability of the disease-free equilibrium point is studied; secondly, based on the case data of COVID-19 transmission in China, the parameters of the model are estimated by using bootstrap sampling, maximum likelihood estimation, and nonlinear least squares fitting. The accuracy of model fitting can be seen through the 95% confidence interval; finally, in order to determine the influence of key parameters on the development of the disease, uncertainty and sensitivity analyses are also conducted. The research results indicate that increasing the effect of information dissemination can lead to changes in human behavior, an increase in conscious population, and an improvement in disease prevention. It will also reduce the effective transmission rate of infected individuals to unconscious susceptible individuals, reduce the number of infected individuals, and better control the spread of the disease.

References

[1]  Laxminarayan, R., Mills, A.J., Breman, A.R., Alleyne, G., Claeson, M., Jha, P., Musgrove, P., Chow, J., Shahid-Salles, S. and Jamison, D.T. (2006) Advancement of Global Health: Key Messages from the Disease Control Project. Lancet, 367, 1193-1208.
https://doi.org/10.1016/S0140-6736(06)68440-7
[2]  Liu, R., Wu, J. and Zhu, H. (2007) Media/Psychological Impact on Multiple Outbreaks of Emerging Infectious Disease. Computational and Mathematical Methods in Medicine, 8, 153-164.
https://doi.org/10.1080/17486700701425870
[3]  Cui, J., Sun, Y. and Zhu, H. (2008) The Impact of Media on the Control of Infectious Diseases. Journal of Dynamics & Differential Equations, 20, 31-53.
https://doi.org/10.1007/s10884-007-9075-0
[4]  Xiao, Y.N., Tang, S.Y. and Wu, J.H. (2015) Media Impact Switching Surface during an Infectious Disease Outbreak. Scientific Reports, 5, Article No. 7838.
https://doi.org/10.1038/srep07838
[5]  Ng, K.Y. and Gui, M.M. (2020) COVID-19: Development of a Robust Mathematical Model and Simulation Package with Consideration for Ageing Population and Time Delay for Control Action and Resusceptibility. Physica D Nonlinear Phenomena, 411, Article No. 132599.
https://doi.org/10.1016/j.physd.2020.132599
[6]  López, L. and Rodó, X. (2020) A Modified SEIR Model to Predict the COVID-19 Outbreak in Spain and Italy: Simulating Control Scenarios and Multi-Scale Epidemic. Results in Physics, 21, Article ID: 103746.
https://doi.org/10.1101/2020.03.27.20045005
[7]  王琪, 薛亚奎. 具有心理效应的媒介传染病模型的研究[J]. 重庆理工大学学报(自然科学版), 2021, 35(2): 251-257.
[8]  史学伟, 贾建文. 一类具有信息变量和等级治愈率的SIR传染病模型的研究[J]. 山东大学学报(理学版), 2016, 51(3): 51-59, 69.
[9]  张杰豪, 陈永雪, 申佳瑜, 张慧, 温永仙. 信息效应下SEIR传染病模型的动力学分析[J]. 数学的实践与认识, 2021, 51(11): 316-323.
[10]  Acua-Zegarra, M.A., Cibrian, M.S. and Velasco-Hernandez, J.X. (2020) Modeling Behavioral Change and COVID-19 Containment in Mexico: A Trade-Off between Lockdown and Compliance. Mathematical Biosciences, 325, Article ID: 108370.
https://doi.org/10.1016/j.mbs.2020.108370
[11]  魏永越, 卢珍珍, 杜志成, 等. 基于改进的SEIR CAQ传染病动力学模型进行新型冠状病毒肺炎疫情趋势分析[J]. 中华流行病学杂志, 2020(4): 470-475.
[12]  Van Bavel, J.J., Baicker, K., Boggio, P.S., et al. (2020) Using Social and Behavioural Science to Support COVID-19 Pandemic Response. Nature Human Behaviour, 4, 460-471.
https://doi.org/10.1038/s41562-020-0884-z
[13]  Weitz, J.S., Park, S.W., Eksin, C., et al. (2020) Awareness-Driven Behavior Changes Can Shift the Shape of Epidemics away from Peaks and toward Plateaus, Shoulders, and Oscillations. Proceedings of the National Academy of Sciences of the United States of America, 117, 32764-32771.
https://doi.org/10.1073/pnas.2009911117
[14]  新型冠状病毒肺炎防控方案(第六版) [Z]. 中华人民共和国国家卫生健康委员会. 2020.
[15]  Driessche, P.V.D. and Watmough, J. (2002) Reproduction Numbers and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Journal of Mathematical Biology, 180, 29-48.
https://doi.org/10.1016/S0025-5564(02)00108-6
[16]  Tang, B., Wang, X., Li, Q., et al. (2020) Estimation of the Transmission Risk of the 2019-nCoV and Its Implication for Public Health Interventions. Journal of Clinical Medicine, 9, Article No. 462.
https://doi.org/10.3390/jcm9020462
[17]  Tang, B., Bragazzi, N.L., Li, Q., et al. (2020) An Updated Estimation of the Risk of Transmission of the Novel Coronavirus (2019-nCov). Infectious Disease Modelling, 5, 248-255.
https://doi.org/10.1016/j.idm.2020.02.001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133