全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

随机参考价格影响下带成本约束的库存系统
Cost-Constrained Inventory System under the Stochastic Reference Price Effect

DOI: 10.12677/orf.2024.142170, PP. 672-689

Keywords: 库存系统,约束最优性,随机参考价格,粘性解
Inventory System
, Constraint Optimality, Stochastic Reference Price, Viscosity Solutions

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文深入探讨了制造商在考虑随机参考价格效应的情况下,对生产和定价做出最佳决策的问题。我们将其表述为随机控制问题,目的是在成本约束下最大化净利润函数。首先,为了解决约束优化问题,我们可以利用拉格朗日乘子方法将其转换为无约束问题。通过动态规划方法和粘性解方法,本文研究结果揭示了无约束问题的值函数是汉密尔顿–雅可比–贝尔曼(HJB)方程的唯一粘性解。然而,HJB方程难以得到显式解,我们利用有限差分理论和随机递归算法建立了合适的数值近似方案。我们证明了HJB方程的有限差分方案的收敛性,并证明了该方案的解收敛于HJB方程的解。此外,我们通过确定适当的拉格朗日乘子,在约束问题的最优解和无约束问题的最优解之间建立联系。最后,我们进行了数值实验并分析了关键参数的灵敏度。我们的实验结果可以为制造商提供库存和定价的参考。
This paper delves into the manufacturer’s problem of making optimal decisions regarding production and pricing, taking into account the stochastic reference price effect. We formulate it as a problem of stochastic control, of which the aim is to maximum the net profit function subject to the cost constraint. First, to tackle a constrained optimization problem, we can utilize the Lagrange multiplier method to convert it into an unconstrained problem. Through the dynamic programming approach and the viscosity solutions method, our findings reveal that the value function of the unconstrained problem serves as the unique viscosity solutions to the Hamilton-Jacobi-Bellman (HJB) equation. However, the HJB equation is difficult to obtain an explicit solution, we use finite difference theory and stochastic recursive algorithm to establish a suitable numerical approximation scheme. We demonstrate the convergence of the finite difference scheme of the HJB equation and demonstrate that the solution of the scheme converges to the solution of HJB equation. Additionally, we establish a connection between the optimal solutions of the constrained problem and the unconstrained one by identifying an appropriate Lagrange multiplier. Finally, we carry out the experiments and analyze a sensitivity of the key parameters. The results of our experiments can provide manufacturers with references of inventory and pricing.

References

[1]  Harris, F.W. (1915) What Quantity to Make at Once. In: The Library of Factory Management, Vol. 5, A. W. Shaw Company, Chicago, 47-52.
[2]  Serrano, A., Oliva, R. and Kraiselburd, S. (2017) On the Cost of Capital in Inventory Models with Deterministic Demand. International Journal of Production Economics, 183, 14-20.
https://doi.org/10.1016/j.ijpe.2016.10.007
[3]  Hsieh, T.P. and Dye, C.Y. (2017) Optimal Dynamic Pricing for Deteriorating Items with Reference Price Effects When Inventories Stimulate Demand. European Journal of Operational Research, 262, 136-150.
https://doi.org/10.1016/j.ejor.2017.03.038
[4]  Güler, M.G., Bilgi?, T. and Güllü, R. (2015) Joint Pricing and Inventory Control for Additive Demand Models with Reference Effects. Annals of Operations Research, 226, 255-276.
https://doi.org/10.1007/s10479-014-1706-3
[5]  Mahapatra, A.S., Soni, N.H. and Mahapatra, M.S. (2021) A Continuous Review Production-Inventory System with a Variable Preparation Time in a Fuzzy Random Environment. Mathematics, 9, Article No. 747.
https://doi.org/10.3390/math9070747
[6]  Zhou, Q., Yang, Y. and Fu, S. (2022) Deep Reinforcement Learning Approach for Solving Joint Pricing and Inventory Problem with Reference Price Effects. Expert Systems with Applications, 195, Article ID: 116564.
https://doi.org/10.1016/j.eswa.2022.116564
[7]  Chenavaz, R. (2016) Dynamic Pricing with Reference Price Dependence. Economics, 10, Article ID: 20160022.
https://doi.org/10.5018/economics-ejournal.ja.2016-22
[8]  Xue, M., Tang, W. and Zhang, J. (2016) Optimal Dynamic Pricing for Deteriorating Items with Reference-Price Effects. International Journal of Systems Science, 47, 2022-2031.
https://doi.org/10.1080/00207721.2014.970598
[9]  Chen, K., Zha, Y., Alwan, L.C., et al. (2020) Dynamic Pricing in the Presence of Reference Price Effect and Consumer Strategic Behaviour. International Journal of Production Research, 58, 546-561.
https://doi.org/10.1080/00207543.2019.1598592
[10]  Chen, X., Hu, P. and Hu, Z. (2017) Efficient Algorithms for the Dynamic Pricing Problem with Reference Price Effect. Management Science, 63, 4389-4408.
https://doi.org/10.1287/mnsc.2016.2554
[11]  Cao, Y. and Duan, Y. (2020) Joint Production and Pricing Inventory System under Stochastic Reference Price Effect. Computers & Industrial Engineering, 143, Article ID: 106411.
https://doi.org/10.1016/j.cie.2020.106411
[12]  Chou, F.S. and Parlar, M. (2006) Optimal Control of a Revenue Management System with Dynamic Pricing Facing Linear Demand. Optimal Control Applications and Methods, 27, 323-347.
https://doi.org/10.1002/oca.785
[13]  Crow, M.L. (2016) Cost-Constrained Dynamic Optimal Electric Vehicle Charging. IEEE Transactions on Sustainable Energy, 8, 716-724.
https://doi.org/10.1109/TSTE.2016.2615865
[14]  王妍怡, 陈宏, 冉超. 库存成本约束下的供应链协调研究[J]. 物流工程与管理, 2014(8): 84-87.
[15]  刘子伟, 陈杰, 陈鑫, 等. 基于成本约束的动态最优电动汽车充电[J]. 电网与清洁能源, 2021, 37(11): 94-101.
[16]  Mendoza-Pérez, A.F., Jasso-Fuentes, H. and Hernández-Lerma, O. (2015) The Lagrange Approach to Ergodic Control of Diffusions with Cost Constraints. Optimization, 64, 179-196.
https://doi.org/10.1080/02331934.2012.736992
[17]  Lu, X., Yin, G., Zhang, Q., et al. (2017) Building up an Illiquid Stock Position Subject to Expected Fund Availability: Optimal Controls and Numerical Methods. Applied Mathematics & Optimization, 76, 501-533.
https://doi.org/10.1007/s00245-016-9359-z
[18]  Sun, B., Tao, Z.Z. and Wang, Y.Y. (2019) Dynamic Programming Viscosity Solution Approach and Its Applications to Optimal Control Problems. In: Smith, F.T., Dutta, H. and Mordeson, J.N., Eds., Mathematics Applied to Engineering, Modelling, and Social Issues, Springer, Berlin, 363-420.
https://doi.org/10.1007/978-3-030-12232-4_12
[19]  Fibich, G., Gavious, A. and Lowengart, O. (2003) Explicit Solutions of Optimization Models and Differential Games with Nonsmooth (Asymmetric) Reference-Price Effects. Operations Research, 51, 721-734.
https://doi.org/10.1287/opre.51.5.721.16758
[20]  Greenleaf, E.A. (1995) The Impact of Reference Price Effects on the Profitability of Price Promotions. Marketing Science, 14, 82-104.
https://doi.org/10.1287/mksc.14.1.82
[21]  Pham, H. (2009) Continuous-Time Stochastic Control and Optimization with Financial Applications. Springer Science & Business Media, Berlin.
https://doi.org/10.1007/978-3-540-89500-8
[22]  Barles, G. and Souganidis, P.E. (1991) Convergence of Approximation Schemes for Fully Nonlinear Second Order Equations. Asymptotic Analysis, 4, 271-283.
https://doi.org/10.3233/ASY-1991-4305
[23]  Lu, X. (2019) Constrained Optimality for Controlled Switching Diffusions with an Application to Stock Purchasing. Quantitative Finance, 19, 2069-2085.
https://doi.org/10.1080/14697688.2019.1614210
[24]  Maimon, O., Khmelnitsky, E. and Kogan, K. (1998) Optimal Flow Control in Manufacturing Systems: Production Planning and Scheduling. Springer Science & Business Media, Berlin.
https://doi.org/10.1007/978-1-4757-2834-7
[25]  Herbon, A. and Kogan, K. (2014) Time-Dependent and Independent Control Rules for Coordinated Production and Pricing under Demand Uncertainty and Finite Planning Horizons. Annals of Operations Research, 223, 195-216.
https://doi.org/10.1007/s10479-014-1616-4

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133