全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于机器学习的股票收益预测与投资组合研究
Machine Learning Based Stock Return Prediction and Portfolio Research

DOI: 10.12677/orf.2024.142163, PP. 599-609

Keywords: 机器学习模型,量化投资,多因子模型
Machine Learning Models
, Quantitative Investing, Multi-Factor Models

Full-Text   Cite this paper   Add to My Lib

Abstract:

计算机和互联网的高速发展使得量化投资在全球逐渐兴起。笔者将机器学习模型和多因子模型相结合构建量化选股模型,并使用上证50指数成分股2016年到2022年的日频数据进行模型训练和样本外预测,结果发现:1) 以随机森林、支持向量机、XGBoost三个模型进行选股构建的投资策略能够战胜市场;2) 投资收益受市场行情影响巨大,在下跌行情中,主动型投资策略即使能够战胜市场,也不能保证获得超过无风险收益率的收益。
The rapid development of computers and the Internet has led to the gradual rise of quantitative investment worldwide. This author combines machine learning models and multi-factor models to construct a quantitative stock selection model, and uses the daily frequency data of the constituents of the SSE 50 index from 2016 to 2022 for model training and out-of-sample prediction, and finds that 1) The investment strategy constructed by stock selection with the three models of Random Forests, Support Vector Machines, and XGBoost is able to the market; 2) The investment return is affected by the market sentiment greatly, and it is difficult to get more than the risk-free rate of return in the falling market.

References

[1]  Markowitz, H. (1952) Portfolio Selection. The Journal of Finance, 7, 77-91.
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
[2]  Sharpe, W.F. (1964) Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. The Journal of Finance, 19, 425-442.
https://doi.org/10.1111/j.1540-6261.1964.tb02865.x
[3]  Ross, A. (1976) The Arbitrage Theory of Capital Asset Pricing. Journal of Economic Theory, 13, 341-360.
https://doi.org/10.1016/0022-0531(76)90046-6
[4]  Fama, E.F. and French, K.R. (1993) Common Risk Factors in the Returns on Stocks and Bonds. Journal of Financial Economics, 33, 3-56.
https://doi.org/10.1016/0304-405X(93)90023-5
[5]  Fama, E.F. and French, K.R. (2015) A Five-Factor Asset Pricing Model. Journal of Financial Economics, 116, 1-22.
https://doi.org/10.1016/j.jfineco.2014.10.010
[6]  王伟. 三因素模型在中国资本市场的有效性研究[D]: [硕士学位论文]. 成都: 西南财经大学, 2008.
[7]  王涛. Fama-French三因子模型及其添加市盈率因子模型在中国股市的适用性研究[D]: [硕士学位论文]. 成都: 西南财经大学, 2012.
[8]  何路. 多因子量化选股及投资者情绪择时策略的实证检验[D]: [硕士学位论文]. 南京: 南京大学, 2020.
[9]  Tay, F.E.H. and Cao, L. (2001) Application of Support Vector Machines in Financial Time Series Forecasting. Omega, 29, 309-317.
https://doi.org/10.1016/S0305-0483(01)00026-3
[10]  Kim, K.J. (2003) Financial Time Series Forecasting Using Support Vector Mechines. Neurocomputing, 55, 307-319.
https://doi.org/10.1016/S0925-2312(03)00372-2
[11]  Kwon, Y.K., Choi, S.S. and Moon, B.R. (2005) Stock Prediction Based on Financial Correlation. Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, Washington DC USA, 25-29 June 2005, 2061-2066.
https://doi.org/10.1145/1068009.1068351
[12]  徐国祥, 杨振建. PCA-GA-SVM模型的构建及应用研究——沪深300指数预测精度实证分析[J]. 数量经济技术经济研究, 2011, 28(2): 135-147.
[13]  韩燕龙. 基于随机森林的指数化投资组合构建研究[D]: [硕士学位论文]. 广州: 华南理工大学, 2015.
[14]  李想. 基于XGBoost算法的多因子量化选股方案策划[D]: [硕士学位论文]. 上海: 上海师范大学, 2017.
[15]  贺隆超. 多因子量化选股与机器学习量化择时投资策略研究[D]: [硕士学位论文]. 乌鲁木齐: 新疆财经大学, 2020.
[16]  吕子夷. 基于机器学习算法的股指期货价格预测与比较研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2020.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133