全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新发心房颤动预测模型的研究进展——基于经典心血管危险因素
Advances in Prediction Model of New-Onset Atrial Fibrillation—Based on Classic Cardiovascular Risk Factors

DOI: 10.12677/acm.2024.1441165, PP. 1337-1344

Keywords: 预测模型,心房颤动,预测
Prediction Model
, Atrial Fibrillation, Prediction

Full-Text   Cite this paper   Add to My Lib

Abstract:

心房颤动(atrial fibrillation, AF)是最常见的持续性心律失常,显著增加死亡、心力衰竭、卒中、痴呆和认知功能障碍风险。临床上有相当一部分房颤患者没有症状,仅在查体或发生并发症时,才被发现罹患房颤。预测模型是房颤高风险人群筛选的有效工具,对该人群进行更积极的监控及制定预防措施能够带来临床获益。不同预测模型来源人群不同,最佳适用人群也不同,本文总结了基于经典心血管危险因素的房颤预测模型,现旨在针对不同适用人群的房颤预测模型进行讨论,以期为临床医务人员提供指导。
Atrial fibrillation (AF) is the most common persistent arrhythmia, which significantly increases risk of death, heart failure, stroke, dementia and cognitive dysfunction. A significant proportion of patients with AF have no symptoms in clinic, and they are not found AF until physical examination or complications occur. The predictive models of atrial fibrillation can help screen patients with high risk of atrial fibrillation, and clinical benefits could be brought with more aggressive monitoring and preventive measures. Different prediction models come from different people and are suitable for different people. This paper summarizes the research progress of atrial fibrillation prediction models based on classical cardiovascular risk factors. This paper aims to discuss the prediction models of atrial fibrillation for different applicable populations, in order to provide guidance for clinicians.

References

[1]  Joglar, J.A., Chung, M.K., Armbruster, A.L., et al. (2024) 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 149, e167.
https://doi.org/10.1161/CIR.0000000000001207
[2]  Shi, S., Tang, Y., Zhao, Q., et al. (2022) Prevalence and Risk of Atrial Fibrillation in China: A National Cross-Sectional Epidemiological Study. The Lancet Regional HealthWestern Pacific, 23, Article 100439.
https://doi.org/10.1016/j.lanwpc.2022.100439
[3]  Du, X., Guo, L., Xia, S., et al. (2021) Atrial Fibrillation Prevalence, Awareness and Management in a Nationwide Survey of Adults in China. Heart, 107, 535-541.
https://doi.org/10.1136/heartjnl-2020-317915
[4]  Sgreccia, D., Manicardi, M., Malavasi, V.L., et al. (2021) Comparing Outcomes in Asymptomatic and Symptomatic Atrial Fibrillation: A Systematic Review and Meta-Analysis of 81,462 Patients. Journal of Clinical Medicine, 10, Article 3979.
https://doi.org/10.3390/jcm10173979
[5]  Boriani, G., Laroche, C., Diemberger, I., et al. (2015) Asymptomatic Atrial Fibrillation: Clinical Correlates, Management, and Outcomes in the EORP-AF Pilot General Registry. American Journal of Medicine, 128, 509-518.
https://doi.org/10.1016/j.amjmed.2014.11.026
[6]  Schnabel, R.B., Sullivan, L.M., Levy, D., et al. (2009) Development of a Risk Score for Atrial Fibrillation (Framingham Heart Study): A Community-Based Cohort Study. The Lancet, 373, 739-745.
https://doi.org/10.1016/S0140-6736(09)60443-8
[7]  Patton, K.K., Heckbert, S.R., Alonso, A., et al. (2013) N-Terminal Pro-B-Type Natriuretic Peptide as a Predictor of Incident Atrial Fibrillation in the Multi-Ethnic Study of Atherosclerosis: The Effects of Age, Sex and Ethnicity. Heart, 99, 1832-1836.
https://doi.org/10.1136/heartjnl-2013-304724
[8]  朱晓庆, 陈韬, 沈娟, 等. 心房颤动预测: 从传统回归模型分析到人工智能模型[J]. 中国循环杂志, 2023, 38(12): 1305-1310.
[9]  Gage, B.F., Waterman, A.D., Shannon, W., et al. (2001) Validation of Clinical Classification Schemes for Predicting Stroke: Results from the National Registry of Atrial Fibrillation. JAMA, 285, 2864-2870.
https://doi.org/10.1001/jama.285.22.2864
[10]  Atrial Fibrillation Investigators (1994) Risk Factors for Stroke and Efficacy of Antithrombotic Therapy in Atrial Fibrillation. Analysis of Pooled Data from Five Randomized Controlled Trials. Archives of Internal Medicine, 154, 1449-1457.
https://doi.org/10.1001/archinte.154.13.1449
[11]  Hart, R.G., Pearce, L.A., McBride, R., et al. (1999) Factors Associated with Ischemic Stroke during Aspirin Therapy in Atrial Fibrillation: Analysis of 2012 Participants in the SPAF I-III Clinical Trials. Stroke, 30, 1223-1229.
https://doi.org/10.1161/01.STR.30.6.1223
[12]  Lip, G.Y.H., Nieuwlaat, R., Pisters, R., et al. (2010) Refining Clinical Risk Stratification for Predicting Stroke and Thromboembolism in Atrial Fibrillation Using a Novel Risk Factor-Based Approach: The Euro Heart Survey on Atrial Fibrillation. Chest, 137, 263-272.
https://doi.org/10.1378/chest.09-1584
[13]  Chao, T.F., Lin, Y.J., Tsao, H.M., et al. (2011) CHADS2 and CHA2DS2-VASc Scores in the Prediction of Clinical Outcomes in Patients with Atrial Fibrillation after Catheter Ablation. Journal of the American College of Cardiology, 58, 2380-2385.
https://doi.org/10.1016/j.jacc.2011.08.045
[14]  Teodorovich, N., Gandelman, G., Jonas, M., et al. (2023) The CHA2DS2-VASc Score Predicts Mortality in Patients Undergoing Coronary Angiography. Life, 13, Article 2026.
[15]  Lahad, K., Maor, E., Klempfner, R., et al. (2022) CHA2DS2-VASc Score Predicts the Risk of Stroke in Patients Hospitalized to the Internal Medicine Department without Known Atrial Fibrillation. Journal of General Internal Medicine, 37, 3355-3360.
https://doi.org/10.1007/s11606-021-07262-x
[16]  Chao, T.F., Liu, C.J., Chen, S.J., et al. (2013) CHADS2 Score and Risk of New-Onset Atrial Fibrillation: A Nationwide Cohort Study in Taiwan. International Journal of Cardiology, 168, 1360-1363.
https://doi.org/10.1016/j.ijcard.2012.12.011
[17]  Guo, Y., Tian, Y., Wang, H., et al. (2015) Prevalence, Incidence, and Lifetime Risk of Atrial Fibrillation in China: New Insights into the Global Burden of Atrial Fibrillation. Chest, 147, 109-119.
https://doi.org/10.1378/chest.14-0321
[18]  Saliba, W., Gronich, N., Barnett-Griness, O. and Rennert, G. (2016) Usefulness of CHADS2 and CHA2DS2-VASc Scores in the Prediction of New-Onset Atrial Fibrillation: A Population-Based Study. The American Journal of Medicine, 129, 843-849.
https://doi.org/10.1016/j.amjmed.2016.02.029
[19]  De Vos, C.B., Pisters, R., Nieuwlaat, R., et al. (2010) Progression from Paroxysmal to Persistent Atrial Fibrillation: Clinical Correlates and Prognosis. Journal of the American College of Cardiology, 55, 725-731.
https://doi.org/10.1016/j.jacc.2009.11.040
[20]  Suenari, K., Chao, T.F., Liu, C.J., et al. (2017) Usefulness of HATCH Score in the Prediction of New-Onset Atrial Fibrillation for Asians. Medicine, 96, e5597.
https://doi.org/10.1097/MD.0000000000005597
[21]  Hsieh, C.Y., Lee, C.H., Wu, D.P., et al. (2018) Prediction of New-Onset Atrial Fibrillation after First-Ever Ischemic Stroke: A Comparison of CHADS2, CHA2DS2-VASc and HATCH Scores and the Added Value of Stroke Severity. Atherosclerosis, 272, 73-79.
https://doi.org/10.1016/j.atherosclerosis.2018.03.024
[22]  Hu, W.S. and Lin, C.L. (2017) Comparison of CHA2DS2-VASc, CHADS2 and HATCH Scores for the Prediction of New-Onset Atrial Fibrillation in Cancer Patients: A Nationwide Cohort Study of 760,339 Study Participants with Competing Risk Analysis. Atherosclerosis, 266, 205-211.
https://doi.org/10.1016/j.atherosclerosis.2017.10.007
[23]  Li, Y.G., Pastori, D., Farcomeni, A., et al. (2019) A Simple Clinical Risk Score (C2HEST) for Predicting Incident Atrial Fibrillation in Asian Subjects: Derivation in 471,446 Chinese Subjects, with Internal Validation and External Application in 451,199 Korean Subjects. Chest, 155, 510-518.
https://doi.org/10.1016/j.chest.2018.09.011
[24]  Hu, W.S. and Lin, C.L. (2020) Prediction of New-Onset Atrial Fibrillation for General Population in Asia: A Comparison of C2HEST and HATCH Scores. International Journal of Cardiology, 313, 60-63.
https://doi.org/10.1016/j.ijcard.2020.03.036
[25]  Li, Y.G., Bisson, A., Bodin, A., et al. (2019) C2 HEST Score and Prediction of Incident Atrial Fibrillation in Poststroke Patients: A French Nationwide Study. Journal of the American Heart Association, 8, e012546.
https://doi.org/10.1161/JAHA.119.012546
[26]  Bekiaridou, A., Kartas, A., Moysidis, D.V., et al. (2022) The Bidirectional Relationship of Thyroid Disease and Atrial Fibrillation: Established Knowledge and Future Considerations. Reviews in Endocrine and Metabolic Disorders, 23, 621-630.
https://doi.org/10.1007/s11154-022-09713-0
[27]  Aronson, D., Shalev, V., Katz, R., et al. (2018) Risk Score for Prediction of 10-Year Atrial Fibrillation: A Community-Based Study. Thrombosis and Haemostasis, 118, 1556-1563.
https://doi.org/10.1055/s-0038-1668522
[28]  Schnabel, R.B., Aspelund, T., Li, G., et al. (2010) Validation of an Atrial Fibrillation Risk Algorithm in Whites and African Americans. Archives of Internal Medicine, 170, 1909-1917.
https://doi.org/10.1001/archinternmed.2010.434
[29]  Chamberlain, A.M., Agarwal, S.K., Folsom, A.R., et al. (2011) A Clinical Risk Score for Atrial Fibrillation in a Biracial Prospective Cohort (From the Atherosclerosis Risk in Communities [ARIC] Study). The American Journal of Cardiology, 107, 85-91.
https://doi.org/10.1016/j.amjcard.2010.08.049
[30]  Alonso, A., Krijthe, B.P., Aspelund, T., et al. (2013) Simple Risk Model Predicts Incidence of Atrial Fibrillation in a Racially and Geographically Diverse Population: The CHARGE-AF Consortium. Journal of the American Heart Association, 2, e000102.
https://doi.org/10.1161/JAHA.112.000102
[31]  Brunner, K.J., Bunch, T.J., Mullin, C.M., et al. (2014) Clinical Predictors of Risk for Atrial Fibrillation: Implications for Diagnosis and Monitoring. Mayo Clinic Proceedings, 89, 1498-1505.
https://doi.org/10.1016/j.mayocp.2014.08.016
[32]  Segan, L., Canovas, R., Nanayakkara, S., et al. (2023) New-Onset Atrial Fibrillation Prediction: The HARMS2-AF Risk Score. European Heart Journal, 44, 3443-3452.
https://doi.org/10.1093/eurheartj/ehad375
[33]  Chao, T.F., Chiang, C.E., Chen, T.J., et al. (2021) Clinical Risk Score for the Prediction of Incident Atrial Fibrillation: Derivation in 7 220 654 Taiwan Patients with 438 930 Incident Atrial Fibrillations during a 16-Year Follow-Up. Journal of the American Heart Association, 10, e020194.
https://doi.org/10.1161/JAHA.120.020194
[34]  Kokubo, Y., Watanabe, M., Higashiyama, A., et al. (2017) Development of a Basic Risk Score for Incident Atrial Fibrillation in a Japanese General Population―The Suita Study. Circulation Journal, 81, 1580-1588.
https://doi.org/10.1253/circj.CJ-17-0277
[35]  Suissa, L., Bertora, D., Lachaud, S., et al. (2009) Score for the Targeting of Atrial Fibrillation (STAF) a New Approach to the Detection of Atrial Fibrillation in the Secondary Prevention of Ischemic Stroke. Stroke, 40, 2866-2868.
https://doi.org/10.1161/STROKEAHA.109.552679
[36]  Verdecchia, P., Angeli, F. and Reboldi, G. (2018) Hypertension and Atrial Fibrillation: Doubts and Certainties from Basic and Clinical Studies. Circulation Research, 122, 352-368.
https://doi.org/10.1161/CIRCRESAHA.117.311402
[37]  Wong, C.X., Sullivan, T., Sun, M.T., et al. (2015) Obesity and the Risk of Incident, Post-Operative, and Post-Ablation Atrial Fibrillation: A Meta-Analysis of 626,603 Individuals in 51 Studies. JACC: Clinical Electrophysiology, 1, 139-152.
https://doi.org/10.1016/j.jacep.2015.04.004
[38]  Cha, Y.M., Redfield, M.M., Shen, W.K., et al. (2004) Atrial Fibrillation and Ventricular Dysfunction: A Vicious Electromechanical Cycle. Circulation, 109, 2839-2843.
https://doi.org/10.1161/01.CIR.0000132470.78896.A8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133