The catalytic conversion of polystyrene (PS) was studied in the presence of the materials type HZSM-5, CeO2, 10% CeO2/HZSM-5 and 20% CeO2/HZSM-5, which were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen adsorption at 77K. The catalytic tests were performed via thermogravimetric analysis (TG) at heating rates of 5, 10 and 20˚C min−1 in a temperature range from 30˚C to 900˚C. For the tests, a ratio of 30% by mass of each catalytic material mixed with PS was used and the activation energy of the degradation process was determined by the Vyazovkin method. The obtained results showed that the addition of the catalyst to the PS in general reduced its degradation temperature. The 10% CeO2/HZSM-5 catalyst showed greater efficiency, as it resulted in lower activation energy for PS degradation. Thus, the combination of CeO2 with HZSM-5 resulted in materials with potential for application in the catalytic degradation of polystyrene and the results indicate that the production of a composite material can be a good strategy to generate an increase in catalytic activity and a decrease in energy process activation.
References
[1]
Chen, Y., Bai, L., Peng, D., Wang, X., Wu, M. and Bian, Z. (2023) Advancements in Catalysis for Plastic Resource Utilization. Environmental Science: Advances, 2, 1151-1166. https://doi.org/10.1039/D3VA00158J
[2]
Associação Brasileira da Indústria do Plástico (ABIPLAST) (2021) A Indústria de transformação e reciclagem de plástico no Brasil. http://www.abiplast.org.br/wp-content/uploads/2022/10/Perfil-2021-PT-vs2.pdf
[3]
Kalali, E.N., Lotfian, S., Shabestari, M.E., Khayatzadeh, S., Zhao, C. and Nezhad, H.Y. (2023) A Critical Review of the Current Progress of Plastic Waste Recycling Technology in Structural Materials. Current Opinion in Green and Sustainable Chemistry, 40, Article ID: 100763. https://doi.org/10.1016/j.cogsc.2023.100763
[4]
Souza, T.G.S., Santos, B.L.P., Santos, A.M.A., Souza, A.M.G.P., Melo, J.C. and Wisniewski Jr., A. (2008) Thermal and Catalytic Micropyrolysis for Conversion of Cottonseed Oil Dregs to Produce Biokerosene. Journal of Analytical and Applied Pyrolysis, 129, 21-28. https://doi.org/10.1016/j.jaap.2017.12.010
[5]
Gama, N., Godinho, B., Marques, G., Silva, R., Barros-Timmons, A. and Ferreira, A. (2020) Recycling of Polyurethane Scraps via Acidolysis. Chemical Engineering Journal, 395, Article 125102. https://doi.org/10.1016/j.cej.2020.125102
[6]
Venderbosch, R. and Prins, W. (2010) Fast Pyrolysis Technology Development. Biofuels, Bioproducts and Biorefining, 4, 178-208. https://doi.org/10.1002/bbb.205
[7]
Abbas-Abadi, M.S., Haghighi, M.N., Yenganeh, H. and Mcdonald, A.G. (2014) Evaluation of Pyrolysis Process Parameters on Polypropylene Degradation Products. Journal of Analytical and Applied Pyrolysis, 109, 272-277. https://doi.org/10.1016/j.jaap.2014.05.023
[8]
Lovás, P., Hudec, P., Jambor, B., Hájeková, E. and Hornace, M. (2017) Catalytic Cracking of Heavy Fractions from the Pyrolysis of Waste HDPE and PP. Fuel, 203, 244-252. https://doi.org/10.1016/j.fuel.2017.04.128
[9]
Flanigen, E.M., Broach, R.W., Wilson, S.T. and Kulprathipanja, S. (2010) Zeolites in Industrial Separation and Catalysis. WILEY-VCH, Weinheim.
[10]
Zhao, L.B., Gao, F. and Xu, F. (2008) Investigation on the Mechanism of Diffusion in Mesopore Structured ZSM-5 and Improved Heavy Oil Conversion. Journal of Catalysis, 258, 228-234. https://doi.org/10.1016/j.jcat.2008.06.015
[11]
Garner, J.P. and Heppell, P.S.J. (2005) Cerium Nitrate in the Management of Burns. Burns, 31, 539-547. https://doi.org/10.1016/j.burns.2005.01.014
[12]
Silva, A.O.S., Souza, M.J.B., Pedrosa, A.M.G., Coriolano, A.C.F., Fernandes Jr., V. J. and Araujo, A.S. (2017) Development of HZSM-12 Zeolite for Catalytic Degradation of High-Density Polyethylene. Microporous and Mesoporous Materials, 244, 1-6. https://doi.org/10.1016/j.micromeso.2017.02.049
[13]
Santos, S.C.G., Machado, S.W.M., Garrido Pedrosa, A.M. and Souza, M.J.B. (2015) Development of Micro-Mesoporous Composite Material of the ZSM-12/MCM-41 Type for the CO2 Adsorption. Journal of Porous Materials, 22, 1145-1151. https://doi.org/10.1007/s10934-015-9990-0
[14]
Souza, M.J.B., Silva, T.H.A., Ribeiro, T.R.S., Silva, A.O.S. and Garrido Pedrosa, A.M. (2020) Thermal and Catalytic Pyrolysis of Polyvinyl Chloride Using Micro/Mesoporous ZSM-35/MCM-41 Catalysts. Journal of Thermal Analysis and Calorimetry, 140, 167-175. https://doi.org/10.1007/s10973-019-08803-7
[15]
Vyazovkin, S. and Goryachko, V. (1992) Potentialities of Software for Kinetic Processing of Thermoanalytical Data by the Isoconversion Method. Thermochimica Acta, 194, 221-230. https://doi.org/10.1016/0040-6031(92)80020-W
[16]
Treacy, M.M.J., Higgins, J.B. (2001) Collection of Simulated XRD Powder Patterns for Zeolites. 4th. Edition, Elsevier, New York.
[17]
Queiroz, C.A.S., Ávila, D.N., Abrão, A. and Muccillo, E.N.S. (2001) Síntese e caracterização de precursores de cério de alta pureza. Cerâmica, 47, 45-50. https://doi.org/10.1590/S0366-69132001000100009
[18]
Pacheco Filho, J.G.A., Graciliano, E.C., Silva, A.O.S., Souza, M.J.B. and Araujo, A.S. (2005) Thermo Gravimetric Kinetics of Polypropylene Degradation on ZSM-12 and ZSM-5 Catalysts. Catalysis Today, 107-108, 507-512. https://doi.org/10.1016/j.cattod.2005.07.065
Silva, B.J.B., Melo, A.C.S., Silva, D.S., Sousa, L.V., Quintela, P.H.L., Alencar, S.L. and Silva, A.O.S. (2020) Thermo-Catalytic Degradation of PE and UHMWPE over Zeolites with Different Pore Systems and Textural Properties. Cerâmica, 66, 379-385. https://doi.org/10.1590/0366-69132020663802948
[21]
Celestino, J.E.S., Garrido Pedrosa, A.M. and Souza, M.J.B. (2022) Pirólise catalítica do polietileno de alta densidade (PEAD) utilizando catalisadores zeolíticos do tipo ferrierita contendo óxido de lantânio. Scientia Plena, 18, Article ID: 044201. https://doi.org/10.14808/sci.plena.2022.044201
[22]
Yu, S., Yan, J., Lin, W., Long. J. and Liu, S.B. (2021) Effects of Lanthanum Incorporation on Stability, Acidity and Catalytic Performance of Y Zeolites. Catalysis Letters, 151, 698-712. https://doi.org/10.1007/s10562-020-03357-y
[23]
Amin, D., Abaza, M., Ameen, S., Elsammak, G. and Reda, S. (2023) Cerium Oxide Nanoparticles Protect against Oxaliplatin Induced Testicular Damage: Biochemical, Histological, Immunohistochemical, and Genotoxic Study. Occupational Diseases and Environmental Medicine, 11, 1-29. https://doi.org/10.4236/odem.2023.111001
[24]
Chen, P. (2022) Crystal Sizes and Energy Gaps of Cerium Oxide Using Co-Precipitation Method. Materials Sciences and Applications, 13, 213-231. https://doi.org/10.4236/msa.2022.134012