All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Contribution to the Full 3D Finite Element Modelling of a Hybrid Stepping Motor with and without Current in the Coils

DOI: 10.4236/jemaa.2024.162002, PP. 11-23

Keywords: Modelling, 3D Finite Elements, Magnetic Flux, Hybrid Stepping Motor

Full-Text   Cite this paper   Add to My Lib

Abstract:

The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the two identical and coaxial half stators. The calculation of the field with or without current in the windings (respectively with or without permanent magnet) is done using a mixed formulation with strong coupling. In addition, the local high saturation of the ferromagnetic material and the radial and axial components of the magnetic flux are taken into account. The results obtained make it possible to clearly observe, as a function of the intensity of the bus current or the remanent induction, the saturation zones, the lines, the orientations and the magnetic flux densities. 3D finite element modelling provide more accurate numerical data on the magnetic field through multiphysics analysis. This analysis considers the actual operating conditions and leads to the design of an optimized machine structure, with or without current in the windings and/or permanent magnet.

References

[1]  Fankem, E.D.K., Takorabet, N., Meibody-Tabar, F. and Sargos, F.M. (2010) Nonlinear Finite Element-Circuit Model of a Hybrid Stepping Motor. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 29, 957-963.
https://doi.org/10.1108/03321641011044370
[2]  Lim, K.C., Hong, P. and Kim, H.-T. (2001) Characteristics Analysis of 5 Phase Hybrid Stepping Motor Considering the Saturation Effect. IEEE Transactions on Magnetics, 37, 3518-3521.
https://doi.org/10.1109/20.952651
[3]  Lu, B.L., Xu, Y.L. and Ma, X. (2016) Design and Analysis of a Novel Stator Permanent-Magnet Hybrid Stepping Motor. IEEE Transactions on Applied Superconductivity, 26, Article No. 0607705.
https://doi.org/10.1109/TASC.2016.2594868
[4]  Ramu, K. (2001) Switched Reluctance Motor Drives: Modeling, Simulation, Design and Applications. CRC Press, Boca Raton.
[5]  Lindsay, J.F., Arumugam, R. and Ramu, K. (1986) Finite-Element Analysis Characterisation of a Switched Reluctance Motor with Multitooth Per Stator Pole. IEE Proceedings, 133, 347-353.
https://doi.org/10.1049/ip-b.1986.0046
[6]  Hilaire, B.D. (2019) Méthodes des éléments finis 3D et le couple de denture d’une machine à réluctance variable hybride. Editions universitaires européennes, Amazon.
[7]  Peng, Z., Bi, C., Fang, L. and Xiao, L. (2022) Optimization of the Three-Phase Stepper Motors for Noise Reduction. Sensors, 22, Article 356.
https://doi.org/10.3390/s22010356
[8]  Fan, Y.Y. (2019) 3D Finite Analysis of a Hybrid Stepper Motor. Degree Project in Electrical Engineering, Stockholm.
[9]  Girardin, M. (2000) Modélisation et réglage d’un entrainement à haute performance par un moteur réluctant. Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne.
[10]  Multon, B. (1994) Conception et alimentation électronique des machines à reluctance variable à double saillance. HDR, Omaha.
[11]  Buss, S. (2010) Aimants Permanents et Assemblages intégrés. YX Magnetic SA.
http://www.yxmagnetic.com.
[12]  Kenmoe, E.D. (2012) Etude de différentes structures d’actionneurs de positionnement pour l’aéronautique. Ph.D. Thesis, Université de Laurraine, Lorraine.

Full-Text

comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413